ST

NASA Conference Publication 2206

Ruggedized Minicomputer
- Hardware and Software
Topics - 1981

bbELLOOD

M

NASA
Ccp
2206

. c.l

WN ‘g4v) AHVHEIT HO3L

WEOBPY; RETURN 16

PR TECHKICAL LigRse™

KIRTLARD AFB, N.M.

Proceedings of a conference held in
San Diego, California
February 22-25, 1981

TECH LIBRARY KAFB, NM

WK

0094399
NASA Conference Publication 2206

Ruggedized Minicomputer
Hardware and Software
Topics - 1981

Proceedings of a conference held in
San Diego, California
February 22-25, 1981

NASN

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1981

PREFACE

This conference publication contains the proceedings of the Fourth ROLM
MIL-SPEC Computer Users Group Conference, held in San Diego, California, February
22-25, 1981. The main purposes of the conference were (1) to promote the inter-
change of ideas among users of ruggedized minicomputers through description of
individual applications, and (2) to report to the computer manufacturer any con-
cerns individual users had relating to the operation of either hardware or soft-
ware supplied by the manufacturer. While all conference activities related to
the use of a single manufacturer's ruggedized computers, many of the novel ideas
discussed at this conference have a much wider scope of applicability. None of the
company/user interchanges relating to the use of ruggedized minicomputers manufactured
by a specific vendor has been included in this publication.

The Fourth Users Group Conference contained presentations covering a wide
range of topics, including (1) the role of minicomputers in the development and/
or certification of new commercial or military airplanes in both the United
States and Europe, (2) generalized software error detection techniques, (3) real-
time software development tools, (4) a redundancy management research tool for
aircraft navigation/flight control sensors, (5) extended memory management tech-
niques using a high-order language, and (6) some comments on establishing a system
maintenance scheme. In addition, copies of the slides used by the guest speaker
detailing areas of new U.S. Navy research and development efforts for 1982 have
been included.

The use of trade names or names of manufacturers in this report does not
constitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

Wayne H. Bryant
Eastern Area Vice-President
ROIM MIL-SPEC Computer Users Group

iii

CONTENTS
PREFACE « « « « = o o o o o o o o o o o oo o

1. AIRBORNE DATA ANALYSIS/MONITOR SYSTEM . . .
Darryl B. Stephison) :

2. ADAMS EXECUTIVE AND OPERATING SYSTEM e e .
W. D. Pittman

3. SYSTEM PERFORMANCE ANALYZER
H. R. Helbig ’

4. ON-BOARD COMPUTER PROGRESS IN DEVELOPMENT OF A

310 FLIGHT TESTING PROGRAM e e 4 e e e e
Pierre Reau

5. NEW STARTS IN RESEARCH AND DEVELOPMENT 1982
Joseph Grosson

6. SOFTWARE ERROR DETECTION« .
Wolfgang Buechler and A. Gilliam Tucker

7. ARTS BETA TESTING REPORT e e e e e e e e .
Michael C. McCune

8. REAL TIME SOFTWARE TOOLS AND METHODOLOGIES
M. J. Christofferson

9. USE OF SOFTWARE TOOLS IN THE DEVELOPMENT OF
REAL TIME SOFTWARE SYSTEMS e e e e e e
Robert C. Garvey

10. ROLM COMPUTERS IN THE FLIGHT TESTING OF THE
FOKKER F29 AIRCRAFT . . « « ¢« « o o« « « .
P. J. Manders

11. FAULT ISOLATION TECHNIQUES c e e e e e e e
Al Dumas

12. EXTENDED MEMORY MANAGEMENT UNDER RTOS USING
Mark Plummer

FORTRAN

13. DESCRIPTION OF A DUAL FAIL-OPERATIONAL REDUNDANT

STRAPDOWN INERTIAL MEASUREMENT UNIT FOR
INTEGRATED AVIONICS SYSTEMS RESEARCH . .
W. H. Bryant and F. R. Morrell

ATTENDEES . . ¢ « ¢ o o o o = o o o = o o « o =

iii-

23

33

47
59
109

115

151

171
193

197

209

219

AIRBORNE DATA ANAL YSIS/MONITOR SYSTEM

Darryl B. Stephison
Boeing Commercial Airplane Company
Seattle, Washington

ABSTRACT

The Airborne Data Analysis/Monitor System (ADAMS) is a ROLM 1666 computer-
based system installed onboard test airplanes and used during experimental testing
of those airplanes. ADAMS provides real-time displays to enable onboard test
engineers to make rapid decisions about the conduct of the test. Such decisions
have reduced the cost and the time required to certify new model airplanes. These
decisions have also improved the quality of data derived from the test, leading to
more rapid development of improvements resulting in quieter, safer, and more
efficient airplanes. The availability of agirborne data processing removes most of
the weather and geographical restrictions imposed by telemetered flight test data
systems.

ADAMS receives sensory input from a separate onboard data acquisition and
recording system. Sensory data is converted to engineering units using automati-
cally selected transform functions matching the characteristics of the data acqui-
sition system. Depending on operator selected options, a variety of .more complex
data transformations are performed to reduce the large volume of data to more
meaningful indicators of data quality, test conduct, and airplane performance. The
operator may also select several output devices and/or formats to meet the needs of
the particular test. A data base is maintained to describe the airplane, the data
acquisition system, the type of testing, and the conditions under which the test is
being performed.

In addition to the 1666 computer, the ADAMS hardware includes a DDC System 90
fixed head disk and a Miltope DD400 floppy disk. Boeing has designed a DMA
interface to the data acquisition system and an intelligent terminal to reduce

system overhead and simplify operator commands. The ADAMS software includes
RMX/RTOS and both ROLM FORTRAN and assembly language are used.

1.0 INTRODUCTION

The Boeing Commercial Airplane Company is currently unchallenged as the
nation's leader in commercial aircraft sales. The company's ability to design,
build, and market better airplanes and a greater variety of airplanes is signifi-
cantly dependent on the ability to prove the airworthiness of those airplanes and
to provide data for continuing product improvement. The flight testing of
commercial jet airplanes to serve those needs has always been expensive and time
consuming. The post-test analysis of flight test data frequently showed that tests
had not been performed correctly or that target parameter values had not been
reached. This resulted in repeat testing. Boeing is now using onboard digital
computer systems for analysis of flight test data in real time. This enables
engineers onboard the test aircraft to make rapid decisions about the conduct of
the test. Such decisions have reduced the cost and the time required to certify
new model airplanes and have improved the quality of data derived from the test.
The availability of airborne data processing removes most of the weather and
geographical restrictions imposed by telemetered flight test data systems.

I.1 Background

Boeing first used computer data processing to aid in the analysis of flight test
data in the early 1950's as part of the B-52 flight test program. Manual
calculations were unsatisfactory, especially for determination of net thrust for
an eight-engine airplane. With the introduction of commercial jet transports,
Boeing began to record flight test data on magnetic tape. These magnetic
tapes were used as input to ground-based computer data processing systems for
post test data analysis. Throughout the 707, 727, and 737 projects, improve-
ments were made to the data acquisition, data recording, and data processing
systems. Computing techniques were continually developed, progressing from
the IBM 701 through the UNIVAC | [03A, the IBM 7094, and the IBM 360.

The concept of an airborne data monitor based on a general purpose mini-
computer was intfroduced in the early 1970's in connection with the Pulse Code
Modulation (PCM) data acquisition system to be used in testing of the E3A
(AWACS) dirplane. The AWACS Preflight and Data Acquisition System
(APDAS) was implemented in 1973. This system was based on a Data General
NOVA 1220 computer. When a similar system was proposed for commercial
agirplane testing, the need for a more rugged main frame was identified.
Experience with APDAS had shown that more processing could be done in this
type of system and the concept of "Application Programs" was introduced. The
Airborne Data Analysis-Monitor System (ADAMS) was implemented in 1975 to
provide an onboard, real time, data monitor and analysis capability based on the
ROLM 1602 Ruggednova.

In 1977, after an extensive review of ADAMS capabilities, problems, and
deficiencies, a decision was made to redevelop ADAMS using the most up-to-
date design and implementation methodologies practical for the project. After
a considerable effort to define and document the requirements for the system
and a study of hardware and software tools available, a design concept was
adopted based on the ROLM 1666 Processor, the DDC System 90 Fixed Head
Disk, RMX/RDOS, and ROLM FORTRAN. About the same time a decision was
also made to redevelop the ground-based computing system using the IBM 303X
Processor and several Digital Equipment Corporation PDP-I| Processors as
peripheral processors. The thrust of these redevelopment efforts was the
impending 767 and 757 airplane certification test programs scheduled to begin
in October of 1981,

A prototype system was installed on an airplane in early 1980 to make an initial
test of the system. The system was known to have several bugs and only a
subset of the total functions to be included in the final system. While this was
expected to prompt many complaints, the single item most vividly identified in
this demonstration was the painfully slow system response.

Simple instrumentation (to be presented in another paper) was very helpful in
locating the source of our sluggish performance. As much as 80% of all
instruction executions were in RMX/RDOS system space. As a result of further
investigation, a decision was made to change operating systems in midstream to
RMX/RTOS. This involved a considerable conversion effort which was not in
the project plan. By late summer, the conversion had been successfully
completed. Additional optimizing of RMX/RTOS and our own executive
subsystem have brought a reasonable performance level into view.

1.2 Environment

2.0

ADAMS is part of a complex data gathering and processing capability .as shown
in Figure |. Onboard the test airplane, inputs from transducers and
electrical/electronic systems in the airplane are combined into serial pulse code
modulated bit streams by the Data Acquisition System. The serial bit streams
are recorded on magnetic tape and/or input to ADAMS. The magnetic tape is

'used after the flight as input to the Data Processing Ground Station, the

purpose of which is to strip selected parameters from the magnetic tape and
pass these to the Test Data Processing System for final processing. Final data
is output as graphical displays, tabulations, hardcopy plots, and magnetic tape
files. Much support is required in terms of data base parameters to keep all
processes running. A large data base is maintained by a Data Base Management
System. Data base parameters required to support the airborne systems are
written to the appropriate storage media by the Instrumentation Sub-System.
This data consists of PROM!'s to support the Data Acquisition System and floppy
disk files for ADAMS.

ADAMS thus has four major external interfaces as shown in Figure 2. The
primary data flow into the system is the serial PCM code received from the
Data Acquisition System. The primary output from the system is display
information. The system is transaction driven with most processing being
initiated by commands from the operator. Data base files and program files are
received from the Instrumentation Sub-System in the form of RMX/RDOS
compatible floppy disk files.

HARDWARE

The hardware for ADAMS can be simply viewed as a central processor surrounded
by four major types of peripheral equipment corresponding to the four major
external interfaces as shown in Figure 3.

2.1 Central Processor

The ADAMS Il Central Processor is a ROLM 666 computer including the main
frame, control panel, and lé-slot I/O expansion chassis. The 1/O expansion
chassis contains an 1/O Bus Repeater, a Disk Controller, an Asynchronous Line
Multiplexer, a Basic I/O Interface, and a Floppy Disk Interface purchased from
ROLM. In addition to these purchased interfaces, Boeing has designed and built
an interface for the Datametrics DMCI|500 Line Printer and a Measurement
Data Bus Interface which is part of our PCM subsystem.

2.2 PCM Input

The PCM Input Subsystem is shown in Figure 4. This subsystem converts serial
PCM data to parallel data, identifies each word of data and places each data
word and its identification on the Measurement Data Bus. Each data word is
then transferred to the core memory of the ROLM 1666 by direct memory
access. The PCM Decommutator provides bit, frame, and subframe synchroni-
zation and converts the serial PCM to parallel data. The Word Identifier
provides a unique identification for each word of parallel data. Boeing has
designed and built the MDB Interface which deposits the data in core memory
based on the identification.

2.3 Display Devices

The major Display Devices are shown in Figure 5. There are two operator
stations, each consisting of a CRT, keyboard, and terminal controller. Boeing
repackaged a commercial CRT to make it suitable for airborne service. The
Boeing-designed terminal controller includes an Intel SBC 80/204 single board
computer. Typical terminal functions are enhanced by the addition of control
functions unique to ADAMS. These functions relieve the Central Processor of
overhead processing required for a more generalized terminal. A graphics
display capability consisting of a Graphics Controller, CRT and a Plotter is
currently being integrated into the system. Analog output from the system is
available from a Digital-to-Analog Converter and a Measurement Selector.
Connection of these devices to the Measurement Data Bus enables the system
to output either selected raw PCM parameters or processed data from the
ROLM 1666. The Line Printer gives alphanumeric hardcopy output capability.
The Remote Digital Display is a Boeing-designed, five-digit numeric indicator
driven by R5232C signals from an ALM port.

2.4 Disk

The mass storage capability of ADAMS consists of a fixed head disk and a
floppy disk. The 4M byte fixed head disk has been modified for airborne use by
the substitution of a 400 Hz motor and power supply. The two-drive floppy disk
is mainly used for transportation of data base and program files from ground
based systems to the airplane in preparation for a test flight. During normal
operation of ADAMS, only the fixed head disk is accessed.

2.5 Keyboard

The simplest of hardware components in ADAMS is the keyboard. This is a
Microswitch Keyboard which has been packaged by Boeing to make it suitable
for the airborne environment. The keyboard is connected to the Terminal
Controller. In addition to typical keyboard functions, the ADAMS keyboard has
a number of fixed siring keys and eight user defined string keys. The Terminal
Controller handles character echoing and other command processing functions
to relieve Central Processor overhead.

3.0 SOFTWARE

The software within the Central Processor can be viewed as one or more
Applications surrounded by peripheral processes as shown in Figure 6. As at the
hardware level, each of the peripheral process types is related to one of the four
major external interfaces. Measurement processing converts the raw PCM
parameters to engineering units parameters (i.e. having units such as degrees,
pounds, volts, etc.). Display processing includes device drivers and additional
routines to allocate devices to Applications or resolve conflicts when two or more
Applications compete for use of a Display Device. Transaction processing accepts
operator commands, loads Application program code, schedules Application
execution, and passes command arguments to the Applications. File Processing
includes disk 1/O drivers, a form of data base management, and temporary disk

file management.

The peripheral processes shown in Figure 6 have been divided into Operating
System and Executive functions. The portion of device handling, memory

management, and task management handled by the ROLM RMX/RTOS are called
Operating System functions. Additional resource management, measurement
processing, transaction processing, file management, data base management, and
system initialization functions unique to ADAMS are called Executive. There are
three types of Application functions as shown in Figure 7. These are called
Monitor, Data Analysis, and Utility functions. Additional "stand-alone" software
is also provided with ADAMS. Thus, the breakdown of ADAMS soffware is shown
in Figure 8.

3.1 Operating System

The ADAMS Operating System is basically the ROLM RMX/RTOS. The system
has been modified by Boeing with the substitution of an improved terminal
driver, an improved ALM driver, an improved line printer driver, an improved
real time clock handler, an improved power fail recovery, an improved system
error handler, and the addifion of a Measurement Data Bus driver. A file
manager has been added to allow creation, deletion, opening, reading, and
writing of temporary disk files.

3.2 Executive

The Executive performs supervisory functions necessary to support execution of
Monitor, Data Analysis and Utility functions performed by ADAMS. The
supervisory functions are in areas of measurement processing, device manage-
ment and allocation, data base management, transaction processing, system
initialization, and other miscellaneous processing.

A more detailed discussion of the ADAMS Executive will be presented in
another paper.

3.3 Monitor

The ADAMS Monitor functions are the primary display generating functions.
These functions are used to generate standard displays of either PCM param-
eters or computed parameters.

The Quicklook function selectively builds displays of the current engineering
units or raw PCM for up to 20 measurements. The update rate of this display is
approximately once per second. Measurement identification number, title, and
units are also displayed. Measurement values are evaluated against predefined
preflight or flight limit values. Displayed measurements exceeding these limits
‘are visibly identified.

The Hardcopy function controls the transfer of data from the operator display
screen to the printer in response to a command. WNo tranformation of data
occurs.

The Printer Time History function generates a display on the printer of a
tabulated listing of engineering units data for up to ten measurements.
Selectable sample rates from one sample in ten seconds to ten samples per
second are provided with default to one sample per second. Measurement
identification number and units are provided at the beginning of each
tabulation. Operator event marking of the output is also provided.

The Analog function selects, scales, and outputs up to 16 engineering units
parameters to the digital to analog converter.

The Panel function selects up to 20 engineering units parameters and outputs
these parameters to panel display modules. A positive indication is made to the
panel display observer if and when the Panel function is not updating. Operator
selected panel update rates of from oneto five samples per second are provided
with default to one sample per second.

The Graphics function selects up to 20 engineering units parameters plus time
and formats these for output using the graphics display. Up to seven
parameters are displayed in real-time. The remaining parameters are stored
for non-real-time plotting. Storage is sufficient for up to 10,000 data values.
Plot formats are of two types, X-Y plot or strip chart. Format information is
entered manually or on file records created using FTCS. In the strip chart
format up to six engineering units parameters are displayed as a function of
time in a manner similar to the chart recorder analog output. In this format
the storage of the Graphics function is used to store old data which has been
"scrolled" off from the display. This old data may be later redisplayed as a non-
real-time plot.

3.4 Data Analysis

The Data Analysis functions convert PCM parameters to computed parameters.
In addition, these functions may build special displays. The first three of these
functions are fundamental and are prerequisites for operation of several other
Data Analysis functions.

The Gross Weight function computes current gross weight of the airplane and
fuel density for each engine.

The Basic Airplane function computes various fundamental aerodynamic para-
meters such as airspeed, altitude, Mach number, ambient air temperature, and
lift coefficient.

The Engine Thrust function computes engine net thrust and various other engine
performance parameters using generalized engine thrust curves.

The General Calculations function enables the user of ADAMS to define real-
time processing to be done by the system with a minimum of design flow time,
Definitions are entered in the form of FORTRAN assignment statements.

The Averages function enables the user of ADAMS to define summary
processing to be done by the system with a minimum of design flow time.
Definitions include averages, minimum, maximum, slopes and integrals.

The Cruise function computes various periodic parameters relevant to cruise
performance testing. These parameters are made available for display using
the various monitor functions and also stored for later post-condition processing
by the Cruise Summary function.

The Cruise Summary program computes slopes and averages for various
parameters stored by the Cruise function and uses the results to refine the
computations of the Cruise function.

The Take-Off function computes various real-time and summary parameters
relevant to take-off and landing performance testing.

The Stalls function computes various real-time and summary parameters
relevant to stall performance testing.

The Flight Controls function computes various real-time parameters relevant to
stability and control testing.

The Acoustics function computes various real time and summary parameters
relevant to aircraft noise testing. Summary parameters are displayed on the
screen. The operator is able to "edit" the summary data. The Acoustics
function then transmits the summary data to an acoustics data processing
system on the ground.

The Loads function is used during structural testing to combine several PCM
parameters according to "linear multiple equations" fo produce real-time
parameters. In addition, this function compares PCM parameters to pre-
defined limits and produces reports of discrepancies.

The Power Plant function computes several real-time and summary parameters
relevant to engine evaluation testing.

The Winds function is used during cruise performance testing to determine wind
speed and direction and other real-time parameters useful in analyzing cruise
data.

The Deviations function is used to compute the deviation of an input parameter
from a steady state value.

The Rosetfte function is used in airplane structural testing to compute total
stress from rosette strain gages.

The Pressure Coefficients function is used in pressure survey testing to
compute coefficients of port pressures (ratio of port pressure to reference
pressure) and to plot pressure distribution as a function of port position both in
real time and as a summary average.

The Airspeed Calibration function is used to add position error corrections for a
variety of pressure ports on the airplane to a reference pressure (such as
trailing cone) and determine the speed of airflow over the pressure ports.

3.5 Utility

The ADAMS Utility functions are primarily used to aid the operator in getting
the system ready for a particular in-flight test or condition. Some of these
functions are also used to check the operation of the data acquisition system or
prepare this system for flight. These functions generate special displays of
PCM parameters and/or file records.

The Editor function is the primary function by which the operator may display,
modify, insert or remove Data Base file records. This function may be used in
flight; however, any time it is used, it is expected to be used to prepare for
a specific test or condition.

The Help function generates special displays of instructive fext which may aid
the infrequent or novice operator to make commands controlling the various

functions.

The Preflight function assists the operator to perform operational checks of
PCM parameters prior to flight and to record the status of parameters checked.
This function also performs noise checks on selected PCM parameters and/or
compare groups of PCM parameters which may be expected to have the same
value to point out deviations from the norm.

The Setup function is used to load the contents of PCM Decommutator and
Word ID memories and/or verify the contents of these memories.

The Functional Test function is used to maintain records of checks made on
PCM parameters by instrumentation engineers prior to the first flight of an
airplane. This function also provides displays of text to instruct the operator on
how to make these checks.

The Strain Gage Bridge Response function provides linear regression coeffi-
cients to correlate bridge outputs with applied loads during airplane structural
calibrations.

The Loads Inertial Correction function computes loads inertia correction
constants for each linear multiple equation performed by the loads function.

The Directory Dump function provides the operator with brief listings of Data
Base record identifiers.

The Calibration Fit function will compute regression coefficients (linear single
section, linear multiple section, or polynomial) for a set of data points obtained
during a measurement calibration performed onboard a test airplane.

The Calibration Conversion function will convert lab calibration regression
coefficients into coefficients usable by ADAMS in the absence of support from
FTCS. This function will also combine calibration coefficients from two or
more transducer components to produce a single set of calibration coefficients
usable by ADAMS.

3.6 Support Functions

The ADAMS software includes certain "stand-alone" programs which may be run
on the system in lieu of the normal ADAMS program. These programs are used
to troubleshoot a malfunctioning system or prepare a new system for use.

A version of RMX/RDOS single user BASIC with several assembly language
subroutines is supplied to allow the ADAMS user to implement small utility
functions of his own design with a minimum of implementation flow time. The
implementation of BASIC as a support function detracts from its usefulness
because the ADAMS Monitor functions cannot be run at the same time. It is
hoped that this can be corrected in future improvements to ADAMS.

Diagnostic programs are provided with ADAMS as necessary to troubleshoot and
repair the ADAMS hardware. This includes the ROLM IDMS and those
diagnostic programs provided by ROLM which are applicable to ADAMS.

Additional diagnostic programs for ADAMS unique hardware are added to the
diagnostic diskette by Boeing. Boeing also plans to enhance the ROLM System
Reliability Test by the addition of tests for ADAMS unique hardware.

A Memory Dump module similar to the RMX/RDOS core dump module can be
added to the ADAMS software for use in development work. This allows core
image files to be written to floppy disk during debugging and software testing.
This module is generally not included in delivered systems.

4,0 DATABASE

The ADAMS Data Base contains parametric data required to support the ADAMS
software in the processing of flight test data. These parameters consist of data
items subject to change between airplane models or between tests. The primary
objective in designing ADAMS to include a Data Base was to make the software
airplane and test independent.

The Data Base consists of several contiguous disk files. These are RDOS files
which have been moved from floppy disk to fixed head disk prior to a test. Each
file contains a logically related set of parameters. The type of parameter and the
logical key are the determinants of which file will contain a parameter. The
array of Data Base files is shown in Figure 9.

The MIT (Measurement Information Tables) Data Base file contains information
necessary to obtain PCM data, convert the data to engineering units and display
the data with standard Monitor functions.

The CONFIG (Configuration Information) Data Base file contains additional
measurement information useful in preparing the Data Acquisition System for a
test or troubleshooting a malfunctioning measurement.

The LIST Data Base file contains lists of up to 20 measurements which may be
displayed by the Monitor functions.

The PRG (Program Information) Data Base file contains initialization and control
information necessary to bring the Application functions into execution.

The TCP (Test/Condition Parameters Table) Data Base file contains parameters
which define the particular test or condition (a portion of a test) to be performed
on the airplane,

The APT (Airplane Parameters Table) Data Base file contains parameters which
define the airplane under test.

The GC (General Calculations) Data Base file contains information which defines
processing to be done by the General Calculations function. In general, each
record in this file is an expression definition consisting of FORTRAN assignment
statements.

The AV (Averages) Data Base file contains information which defines processing
to be done by the Averages function.

The PCM Data Base file contains tables of control parameters to be loaded into
the PCM Decommutator by the Setup function.

10

The WID (Word ldentifier) Data Base file contains tables of control parameters to
be loaded into the Word Identifier by the Setup function.

The KEYF (Key File) Data Base file contains ASCIl strings to be treated as
commands in lieu of actual keyboard entries.

The POS (Position) Data Base file contains list position information used by the
ADAMS operator to sequence through the display of several lists of measure-
ments.

The HELP Data Base file contains operating instructions and system information
to be displayed by the Help function.

The EDIT Data Base file contfains record format definitions for the other Data
Base files. This information is used by the Editor function to display Data Base
file information.

The LOADS Data Base file contains information which defines processing to be
done by the Loads function. Each record in this file defines a "linear multiple
equation" by which strain gage inputs are combined by the Loads function.

The RELOC (Program Relocation) Data Base file contains information used by the
Job Controller to load and relocate Application functions.

The MSG (Message) Data Base file contains error message strings which are
displayed on the operator screen in the event of an error.

The FT (Functional Test) Data Base file contains records of functional checks
made on the Data Acquisition System prior to the first flight of an airplane.
These records are maintained by the Functional Test function.

The FTST (Functional Test Support Text) Data Base file contains text consisting
of instructions for completing functional checks and calibrations onboard the
airplane prior to first flight.

The MISC (Miscellaneous) Data Base file contains information used by several
Application functions such as display formats and initialization constants.

Each Data Base file has three major parts as shown in Figure 10. The first part of
a Data Base file is the Preamble. The Preamble contains file identification and
applicability information such as file name, airplane model, airplane identifi-
cation, test identification, date and time of Data Base file generation or
modification. The second part of a Data Base file is the Directory. The
Directory is used to locate information within the Data Base file. The third and
final part of a Data Base file is the Data. Each Entry in the Directory is
associated with a single Data record. Both the Directory and Data areas are
padded with sufficient space to allow addition of a reasonable number of new
Entries and Records.

Each Directory Entry as shown in Figure || consists of a Record Identifier, a
Record Pointer, and a Record Size. Record Identifiers are floating point numbers
for some Data Base files and four ASCII characters for others. Record Pointers
are double precision byte addresses of the beginning of the associated records

relative to the beginning of the file. The Record Size word contains the number
of words in the associated Data Record.

Within each Data Record as shown in Figure 12, there may be several Data
Elements. These may be floating point numbers, integers or ASCII strings. In
some Data Base files, all Data Records have the same format; in other Data Base
files the format is dependent on the Application for which they are used.

50 SUPPORT SYSTEMS

The ground based computer systems supporting ADAMS are unique to Boeing
Flight Test and deserve some discussion. These systems are shown in Figure |3.
The Airborne Data Systems Development Laboratory (ADSDL) is the software
development facility for ADAMS. The Data Base Management System (DBMS),
one of two systems referred to collectively as the Flight Test Computing System
(FTCS), is used to maintain data base parameters to support all of the Flight Test
data processes. The Instrumentation Sub-System (ISS) is used to generate
transportable media (floppy disk) to transfer Data Base Files and Program files
from the ground based systems to ADAMS.

5.1 Airborne Data Systems Development Laboratory

All the ADAMS software is developed in the Airborne Data Systems Develop-
ment Laboratory (ADSDL). Permanent installations include two Data General
Eclipse computers and two ROLM 1666 computers. The Data General Eclipse
5200 and 5230 share a 200-megabyte disk. Each computer operates in a dual
program mode allowing four programmers to have full system capability. A
four-drive AED 6200 floppy disk is connected to each computer and a system
driver has been written and installed in the ARDOS and ZRDOS systems.
ROLM software, including the ROLM FORTRAN Compiler, the Macro
Assembler, the Relocatable Loader, and the RMX/RTOS System Generation
program, have been purchased in source form, assembled, and installed on the
system. This allows programmers to develop software to the core image form
(save and overlay files). Programs are then moved to the floppy disk and moved
to one of the two ROLM 1666 computers for debugging and software testing.
Each of these computers is installed in a nearly complete ADAMS hardware
complex (some peripheral equipment is shared). The ability to play back copies
of flight data tapes allows a simulation of in-flight conditions. When programs
have been satisfactorily demonstrated in the ADSDL and are ready for airborne
use, they are transmitted to the Flight Test Computing System (FTCS). This is
accomplished by the use of an RJE-HASP link and the running of the Data
General HASP Emulator (HAMLET) on the Eclipse S230.

5.2 Flight Test Computing System

The Flight Test Computing System (FTCS) is a large and complex system based
on an IBM 3033 computer. A complete discussion of this system is beyond this
text; however, the important functions relating to ADAMS are worth noting.
The mest important function of FTCS relative to ADAMS is the maintenance of
data base parameters. The Data Base Management System (DBMS) in FTCS
controls a very large collection of parameters to support not only ADAMS but
many other functions in Flight Test as well. The DBMS receives data
interactively from several operators throughout Flight Test using menu driven
display screens. On command from an operations engineer responsible for a

"

12

particular test airplane, appropriate data base parameters are transmitted to
the Instrumentation Sub-Systems (ISS) to be made into Data Base files for use
by ADAMS. Transmission is via RJE-HASP links.

In addition to the DBMS function, FTCS performs a sort of packet switching
function to distribute ADAMS program files. These program files are treated
as binary data sets and are held by FTCS only until valid reception has been
acknowledged by each 1SS. No transformation of the data is done by FTCS.

5.3 Instrumentation Sub-System

6.0

The Instrumentation Sub-Systems (ISS) are DEC PDP-I|1 computers which are
used as intelligent output ports for FTCS. Other local functions are also
performed in support of the Flight Test Instrumentation group. Each 1SS
includes a two-drive AED 6200 floppy disk. System drivers are not used for the
floppy disk but rather local drivers in application programs do all 1/O to this
device. This allows formatting and initialization of floppy disks in RMX/RDOS
format and the creation and writing of Data Base and Program files on these
diskettes.

OPERATIONAL SCENARIO

The preparation and operation of the Flight Test data processing systems require
coordination of many people, both within and outside of the Flight Test Engineer-
ing organization. Much consideration has been given in the design of all of these
systems to the diversity of people who must interface with them.

6.1 Preflight

Requests for data are received by the Flight Test Engineering organization
from other organizations throughout the Boeing Commercial Airplane Company.
These typically include design, research and development, flight simulation and
customer support organizations. The Flight Test Analysis engineers analyze
these requests as well as current Federal Aviation Administration requirements
for airplane certification to determine what parameters must be acquired and
recorded and what data processing must be done to satisfy the total data need.
As a result of this analysis, a list of instrumentation requirements is developed
using the DBMS. Initial receipt of such a list on the [SS prompts Flight Test
Instrumentation engineers to begin designing and implementing installations of
Data Acquisition and ADAMS hardware. The Analysis engineer may also
request new data processing capability for either ADAMS or TDPS. The
Airborne Data Processing group analyzes airborne data processing requests and
designs and implements new functions as necessary. After satisfactory
demonstration of software in the lab, released software is transmitted from
ADSDL to FTCS and forwarded to ISS. The Analysis and Instrumentation
engineers must work interactively with the DBMS to build data base parameters
necessary to support Data Acquisition, ADAMS, DPGS and TDPS. Meanwhile,
Flight Test Operations engineers prepare a plan of test which is the script for
directing the test.

ADAMS is made operational as soon as the installation on an airplane is
complete. Diagnostics are run to prove operability and then the system
software and Data Base files are moved from floppy disk to fixed head disk.
ADAMS is used to check the operation of the Data Acquisition System. Checks

are made on each PCM parameter using the ADAMS Monitor functions and
records are kept with the aid of the Functional Test function. On-board
calibrations are made if necessary, aided by the Calibration Fit and Strain Gage
Bridge Response functions. Throughout the installation phase, data base
parameters in FTCS are continuously updated by interactive input.

Shortly before first flight and each flight in the test period, the most current
Data Base files are installed on the ADAMS disk. Within the data base are
indicators of which PCM parameters are required for the current test.
Operational checks are made on each of these parameters. The Preflight
function aids in this process and is used to maintain a record of the process.
When each parameter has been checked and all airplane systems are ready for
flight, the airplane is released for flight.

6.2 Flight

Upon release of the airplane, the flight crew boards the airplane. In addition to
the pilot, copilot, and flight engineer, the flight crew typically includes
Operations Instrumentation and Analysis engineers as necessary to direct,
monitor, and evaluate the test. In many cases, representatives of requesting
organizations or the FAA are also included.

As the pilot, copilot and flight engineer check the airplane for flight, the
Instrumentation and Analysis engineers check the Data Acquisition System and
ADAMS. Data Base parameters are displayed and verified. Application
functions used for preflight are replaced by Monitor and Data Analysis
functions appropriate for the current flight.

When all systems are ready for flight, the flight data recorder is turned on, the
engines are started and the test begins. Since all of the systems required to
accomplish flight testing are self-contained on the airplane, testing is not
restricted to the local area. If the weather or field characteristics in the local
area are not suitable for the current test, the airplane may be flown anywhere
within its normal flight range.

The conditions for each test (airspeed, altitude, engine settings, etc.) can be
accurately adjusted and verified using the Monitor and Data Analysis functions.
If the conditions cannot be met, time is not wasted performing tests which
might produce questionable data. This type of cost-saving decision can only be
made because accurate processed data is rapidly available whenever and
wherever the airplane flies.

The conduct of the test is closely monitored to insure that all testing is done
strictly according to plan. The real-time data reduction performed by ADAMS
condenses a large number of measured parameters to a few of the most
significant indicators of test conduct and airplane performance. This enables a
few engineers to monitor hundreds of parameters in real time.

As each item on the test plan is completed, the results of testing may be
quickly compared to results of previous tests and to design predictions. Output
data formats have been designed to maximize the similarity between ADAMS
output and ground based final data output. This eases the comparison task. In
some cases, target data values are even contained in the ADAMS Data Base to
enable Application functions to make these comparisons. If test results should

13

14

fail to meet design predictions, decisions can be made in flight on whether to
continue the line of testing or to suspend the testing until corrections can be
made. Again, cost savings are realized because early decisions are made which
can only be based on processed data.

6.3 Post-Fflight

7.0

After completion of a test flight, the flight data tape is normally taken to the
Data Processing Ground Station to begin the stripping of usable data from the
tape. ADAMS may be used either on the airplane or in a lab to play back the
flight data tape. This allows additional analysis of the flight data to determine
the extent of usability. Requests for processing by DPGS and the Test Data
Processing System are thus minimized, resulting in additional cost savings.

Selected data which has been extracted from the flight data tape and
transmitted to TDPS is processed by applications similar in function to ADAMS,
but much larger in scope. The absence of time constraints and the availability
of very large storage allow much more complex data transformations to be

accomplished.

With final data in hand, the Analysis engineers prepare reports to the
organizations which requested the dataq, including the FAA. Meanwhile, on all
but a few Boeing owned airplanes, the special equipment is removed and the
airplane is prepared for delivery to a customer airline.

FUTURE SYSTEMS

The future of airborne data processing in Boeing Flight Test is a steadily
increasing demand for processing capacity, speed, and reliability. We believe that
this demand can be best met by the introduction of a multiple processor system.
A possible configuration is shown in Figure 14. Other concepts are being
evaluated. Microprocessor technology is being viewed with considerable interest
because this could allow the configuration of a system particularly tailored to a
specific Flight Test application. A combination of microprocessor elements with
the medium scale ROLM 1666 is likely.

FLIGHT TEST DATA SYSTEMS
AN

AR,
“

GROUND

Figure 1

ADAMS EXTERNAL INTERFACES
- 00N

] DisK- FiLE
A AN

SERIAL-
PCM

DISPLAY

TCOMMAND
a—

Figure 2

15

ADAMS HARDWARE

PCM CENTRAL" DISPLAY

INPUT

KEYBOARD

Figure 3

ADAMS PCM INPUT SUBSYSTEM

TERMINATOR

PCM 'WORD

DECOMUTATOR IDEN‘:’IFIER
ﬁ 1 ﬁ
. : > 1 measurement
= 2 DATA BUS
——) AR,) AR —
PCM WORD
4l OE COMUTATOR IDENTIFIER 0N
PCM N o

TERMINATOR

MDB
INTERFACE

l“ll“

CENTRAL
PROCESSOR

Figure 4

ADAMS DISPLAY DEVICES

10

EXPANSION
CHASSIS

|

=

REMOTE LINE GRAPHICS TERMINAL

DIGITAL TERMINATOR

DISPLAY PRINTER CONTROLLER CONTROLLER
l MDB I 1

MEASUREMENT
SELECTOR PLOTTER

DIGTAL

T0

ANALOG
CONVERTER

Figure 5

ADAMS SOFTWARE
t

FILE
PROCESSING

MEASUREMENT ; APPLICATION , DISPLAY
PROCESSING PROCESSING | PROCESSING

TRANSACTION
PROCESSING

t

Figure 6

17

ADAMS APPLICATIONS

FILE- FILE-
I RECORD lRECORD
UTILITY MONITOR
rammd FUNCTIONS B e 4 FUNCTIONS B g
PCM- - DISPLAY- PCM- DISPLAY-
PARAMETER INFO PARAMETER INFO
COMMAND- FILE- COMMAND-
ARGUMENT I 1 RECORD ARGUMENT
COMPUTED-
PARAMETER
DATA
— ANALYSIS —
PCM- FUNCTIONS DISPLAY-
PARAMETER INFO
COMMAND-
ARGUMENT
Figure 7

2

OPERATING . DATA
iy EXECUTIVE MONITOR ANALYSIS

UTILITY

SUPPORT

Figure 8

18

ADAMS 11 DATA BASE

DATA

BASE

FILES LIST HELP | EDIT |LOADS|RELOC
MSG FTST | MISC

Figure 9

— = =
\Y

APT
|

ADAMS DATA BASE FILE

PREAMBLE

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

RECORD

DIRECTORY

RECORD
RECORD
RECORD
RECORD

L

o
e
>

:
?
?
7

Figure 10

20

ADAMS DIRECTORY ENTRY

~RECORD

IDENTIFIER

RECORD
POINTER

RECORD
SIZE

Figure 11

ADAMS DATA RECORD

ELEMENT

ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT

ELEMENT

“ONANANANANAY

Figure 12

ADAMS SUPPORT

Figure 13

ADAMS MULTI-PROCESSOR SYSTEM

PROCESSED DATA BUS

- g

TRANSACTION DISPLAY
PROCESSOR PROCESSOR

Lo

> MEASUREMENT FILE
PROCESSOR PROCESSOR

APPLICATION

PROCESSOR

1]]]

COMMAND AND CONTROL BUS

Figure 14

21

ADAMS EXECUTIVE & OPERATING SYSTEM
W. D. Pittman
Boeing Commercial Airplane Company
Seattle, Washington

ABSTRACT

The ADAMS Executive and Operating System is a multi-tasking environment under which
a variety of data-reduction, display and utility programs are executed. This environment
provides a high level of isolation between programs which allows them to be developed
and modified independently.

INTRODUCTION

The Airborne Data Analysis/Monitor System (ADAMS) was developed to provide a real-
time data monitoring and analysis capability on board Boeing commercial airplanes
during flight testing. It inputs sensor data from an onboard data acquisition system and
converts it to engineering units data, derives airplane performance data by applying
transforms to the collected sensor data, and presents this data to test personnel via
various display media.

ADAMS is a real time transaction-oriented computing system. ADAMS operators input
processing requests at the system consoles as necessary to evaluate flight test conditions
(a simplified model of ADAMS is shown in Figure |). Operator requests are input to the
system executive which then schedules the requested processes. Active processes
refrieve operator commands, airplane sensor data and support data via the executive,
send processed data to the executive for subsequent input to other active processes, and
send formatted data to display devices via executive device management software.
These processes perform functions such as the collection and display of engineering units
data on various output media (line printer, CRT display, graphics display, strip chart
recorder); collection and reduction of real time data (data averaging and integration,
computation of derived parameters); and support processing (support data display and
modification, hardware setup, system checkout).

DESIGN CONCEPT

ADAMS is based upon the concept of functionally independent parallel processes which
are initiated and controlled by explicit operator commands. Although dozens of
processes are available to be invoked by the operator, typically only a subset of the total
is- selected to run concurrently. The demand for system resources made by these
processes is so varied that a suvitably versatile program environment was deemed
necessary. Since it was expected new functions would be added to the system on a
regular basis and that existing functions would be updated and modified frequently, it
was also a requirement that the functional capability of ADAMS be quickly adaptable
and easily extendable. In order to meet these requirements, it was decided to develop the
system around a vendor-supplied operating system and implement ADAMS functions as
independent programs written in a high level language. Since the ROLM 1666 was
selected as our system processor, RMX/RDOS and ROLM FORTRAN became the
operating system and high level language upon which the system was based, although it
was expected that the operating system would have to be enhanced or modified in order
to implement the program environment which was desired. -

23

24

One of the goals during the development of ADAMS was that the various application
programs be very loosely coupled with one another. Another was to isolate the
applications from the hardware and operating system and provide them with very high
level interfaces with which to communicate with their environment. The programs
would use these interfaces to fetch and store engineering units data, communicate with
the operator, fetch and store support data, and output to display devices.

SYSTEM DESCRIPTION

The management of ADAMS application programs is accomplished by the transaction
processor, scheduler and loader, as shown in Figure 2. The transaction processor accepts
and validates user commands for requested processing. |f the command was a legal
request and the requested process was not active, then the transaction processor will
read the process descriptor from disk and install it into the active process table. The
process descriptor contains information such as iteration rate, priority, overlay name,
status information, and program location, and is used by the scheduler and loader to
execute the process as required. The scheduler (via real time clock and measurement
data interrupts) determines when each active process is ready to begin execution. If the
overlay defined for the process is not in core when the process is ready, then the loader
will load the overlay into memory and the process will begin execution, otherwise the
process will begin execution when ready.

Very early in the design of ADAMS it was recognized that main memory would be a very
limited resource. It was anticipated that all of the required ADAMS application
programs would not fit in available memory (64K). Furthermore, the likelihood that
those programs required to run in parallel would not fit in memory together was very
high. The most obvious solution to the problem was to buy the required additional
memory; however, it was felt that buying the memory required for 32 systems would not
be cost effective. Another alternative was to use the disk overlaying capability provided
by the RMX/RDOS operating system, which was rejected because it was too limited to
support our processing requirements,

The approach which was adopted relied on a run time program loader to swap ADAMS
programs between disk and main memory (Figure 3) and a scheduler to execute the
programs. When a program is ready to execute, the loader loads the program's common
storage block and code info memory, swapping out any idle programs if necessary to
make room. The loader adjusts all references by the program to the common storage
block and external routines.

The program scheduler uses many of the facilities of RMX/RTOS to start and maintain
the execution of ADAMS programs (Figure 4). An RMX/RTOS task is defined for each
active program beginning at the scheduler starting address. When the task begins
execution, it calls the loader, which installs the appropriate overlay into memory. The
scheduler then executes the overlay as a subroutine, after which time it suspends until
restarted by the real time clock handler when its cycle time has expired or by the
Measurement Number Data Bus handler when a specified data item is input to the
system. Appropriate status words are maintained for each program which allow the
loader to move programs to and from disk as required for execution. (Of course if ali
executing programs fit into available memory, then swapping is not required.) A kill
processor releases all system resources held by a program when it is terminated and is
initiated either by an UNLOAD command received from the operator, or because the
program finished executing a non-cyclic overlay and no cyclic overlay was specified, or
because a software malfunction was detected in the program.

All data flow to and from ADAMS application programs is controlled by the system
executive. Programs are not allowed to directly communicate with each other, nor are
they allowed to communicate with the system or the external environment except
through the interfaces previously mentioned. These interfaces, which are accessed via
FORTRAN subroutine calls, define the data flow through the system and provide a
consistent and simplified access method for system resources (Figure 5). Isolating the
programs from one another allows them to be developed independently and reduces the
risk of unwanted side-effects when application, executive, or operating system software
is modified. lIsolating the programs from the system resources reduces the risk of the
inadvertent corruption of those resources. The access method to system resources
reduces much of the effort required to develop application programs and defines a
simplified conceptual model of the program environment.

The Measurement Data Generator is the conduit through which all cyclic data is passed
through the system. It performs two functions for application programs: fetch
engineering units data and save engineering units data. The fetch function retrieves a
previously saved data value or fetches the sensor data (which is continuously being
DMA'ed into memory) and converts it to engineering units. Conversion and calibration
information for each sensor is stored in the support data base. The save function stores
a data item for subsequent retrieval by other programs.

The Device Manager interfaces the application programs to the various ADAMS devices
such as the line printer and system consoles. It provides high level FORTRAN calls to
communicate with the devices and handles contention among application programs for
those devices.

The File Manager provides a high level interface to the system disk for application
programs and other executive functions. It is an enhancement of the limited RTOS disk
support facility and provides routines to create, delete, open, close, read and write disk
files. All disk data transfers are buffered by the system in a manner similar to that done
by RMX/RDOS.

The Data Base Manager implements the access method by which programs fetch, store
and modify the system support data. Each item in the support data base is identified by
a unique key which is used by the program to request action on the item.

The application programs alter their own or other programs' execution status via calls to
the Job Controller. These calls are used to start and send commands to other programs,
change their own or other programs’' iteration rate, unload (kill) themselves or other
programs, chain to new overlays, or adjust the size of their common storage.

ADAMS is based upon a modified version of the RMX/RTOS operating system. Most of
the features of that operating system have been retained, but many of the device drivers
have been modified, a disk file management facility was added, the system error and
trap handling facility was expanded, and task calls have been added or modified.

Many of the existing RTOS device drivers (TTY, LPT, ALM) have been or are being
modified to improve their efficiency or adapt them to accommodate special ADAMS
devices. A driver to handle a Boeing-designed data bus interface was implemented and
integrated with RTOS, and a real time clock handler was installed to facilitate the
scheduling of ADAMS programs.

The system error and trap handler was added to allow ADAMS to attempt recovery from
software malfunctions. It gains control of the CPU when a processor trap or system

25

26

error is detected (stack overflow, unimplemented instructions, jump zero, etc.). If the
error occurred while executing an application program, then that program is killed and
all system resources held by that program released. If the error occurred while
executing the executive or operating system, then the system is reinitialized (rebooted)
and the operator informed of the malfunction.

Two task calls, LOK and UNLOK, have been added to allow processes and system
resources to be locked and unlocked. The inclusion of these calls allows the locks to be
cleared if the requesting task is killed. Other task calls have been modified to reduce

system overhead.

In addition to the executive and operating system software described previously, ADAMS
relies on three support programs (Figure 6). The first of these is a system generator
which executes on a Data General Eclipse minicomputer, It uses a version of the ROLM
relocatable loader and a Boeing developed utility program to link and load all system and
application program object modules. It produces an executable save file, a system
overlay file, and an application program overlay file. The system overlay file contains
position independent system overlays, while the program overlay file contains program
overlays and relocation information. The second of these programs, the bad block
detector, executes on the ROLM 1666 processor. It searches the bad block pool on the
fixed-head disk for bad blocks and sets the appropriate bits in MAP.DR to prevent those
blocks from being used. This is necessary because the RMX/RTOS disk driver does not
do bad block mapping. The third of these programs, the system initializer, runs under
RMX/RDOS on the ROLM 1666. This program searches the disk for all files required
during execution of ADAMS and inserts an entry for each into the RTOS disk table in the
ADAMS save file, then "boots" the save file, bringing the ADAM System into execution.

SYSTEM DEVELOPMENT

During 1979, a prototype of ADAMS was developed which executed in the RMX/RDOS
environment. This version was installed on a test airplane early in 1980 to make an
initial evaluation of the system. Even though only a small subset of our application
programs had been developed up to that point, it was very clear that the performance of
the system was far below what was required.

We had fortunately anticipated the need to analyze system performance and had
developed instrumentation hardware which allowed us to measure the performance of a
program executing in the 1666. This instrumentation enabled us to sample the program
counter in the 1666 and thus produce a histogram which displayed a distribution of time
versus memory location.

Using the output of our instrumentation we were able to verify that the CPU was
saturated and that about 80% of the time was being spent in RMX/RDOS system space,
the majority of which appeared to be in swapping system overlays and handling serial
I/O. Since by this time ROLM had released the RMX/RTOS operating system, the
decision was made to abandon RMX/RDOS and convert the system to run under
RMX/RTOS.

The similarities between RMX/RTOS and RMX/RDOS greatly aided the conversion
effort, although numerous bugs in the released version of RMX/RTOS required a great
deal of effort by our own software engineers to isolate. (We have since decided to
maintain our own version of RMX/RTOS.) Although a disk file management capability
had to be developed, the ADAMS Executive was converted and was executing under
RTOS within three months. The isolation of the application programs from the operating

system had also been a great advantage; except for minor modifications required for one
or two programs, the application programs were able to execute in the new environment.

The improvement in performance was dramatic: operating system overhead was reduced
from 80% to about 50%, and memory usage of the Executive and Operating System was
reduced from about 50K to about 32K. Additional optimization to both the operating
system and executive since then has improved their performance to a reasonable level.

FUTURE DEVELOPMENT

Experience gained during the development and initial use of ADAMS has revealed
limitations in system capability, while ever-increasing requirements for airborne data
processing will require improved system performance. Three approaches are now being
taken to improve system capability: enhancement of 1666 resident software, increasing
the power/performance of the 1666, and distributing the processing load to additional
computers,

The 1666 resident software will be enhanced to improve the reliability of the system.
The memory protection features of the 666 will be used to further isolate application
programs from each other and from the system executive, thus reducing the risk of an
aberrant program corrupting the system. Improvements to the system build process,
consisting of a special relocatable loader to build program overlays and a utility to edit
the program overlay file, will reduce the time required to generate systems and improve
the maintainability of the system.

Development is already underway to improve the performance of the 1666 processor.
Since a significant portion of ADAMS' CPU resources is spent servicing the various
output displays, the decision was made to develop intelligent general purpose interfaces
to handle the system I/O processing. These interfaces, which are planned to replace the
TTY, ALM and printer interfaces, will be programmable to enable them to be adapted to

a variety of devices, and will handle data transfers to and from the 1666 memory via
DMA.

Recent requirements for airborne data processing have increased to the extent that our
present 1666 CPU-based system is seriously underpowered. As an example, requirements
for one new application program call for computations performed at a rate which s
beyond the capabilities of the 1666. In order to be able to meet these and expected
future requirements, we have decided to develop a multiprocessor architecture for
ADAMS, as shown in Figure 7. This architecture will feature two high-speed buses: a
cyclic data bus and a block data bus. The cyclic data bus, developed by Boeing, will
carry cyclic sensor and computed data. The block data bus, the Ethernet bus developed
by Xerox, will carry burst-type data (such as commands, support data, interprocessor
communication, etc.). The ADAMS Executive will be extended to handle the additional
processors, which will be connected across the two buses. The 666 will remain in the
system and will manage system resources, and perhaps display processing, while the data
reduction and analysis programs will be distributed to other processors, for which we are
currently planning to use the new generation of |6 and 32 bit microprocessors.

27

28

Operator
Commands

D

Airplane
Measurement
Data

ADAMS IT MODEL

ADAMS Disp!ay
EXECUTIVE Media
Support A
Data
Process I Process
Process Process
Y
Process
Figure 1
Process Program
Descriptor Storage
File File
> Overlay
Area
Loader
<+ A
—_— ctive
——— | Frorser” -
User Table
Command
P Scheduler
MNDB RTC
Interrupts Interrupts
Figure 2

B |

Program B
Common

‘/V

Program A
Code

Loader 4>

Program B
Code

Unused

Program A
Common

Figure 3

.ROL Command
Pl processor %
&
fe
RTC
&~ Handier
AV
XMT
; Scheduter
Loader € —> .SUSP
REC Rz,
e
PJSE | MNDB
Handler
Task A Task B Task C
SKILL
RTRN
Kill
Processor

Figure 4

Generator

Job

Controller Device

Application Manager
Program

Data File
Base
Manager Manager
Figure 5
Core
Image
O\ ysten systen
— System > stem
O/ Generator _g\ﬁzlay Initializer
Object
Modules
Bad Bad
Block J————»| Block MAP . DR
Pool Detector

Figure 6

Raw Data Bus
Measurement

Processor

ROLM
1666

System
Manager

Processed Data Bus Block Data Bus

Application
Processor

Apptication
Processor

Figure 7

A

SYSTEM PERFORMANCE ANALYZER

H. R. Helbig
Boeing Commercial Airplane Company
Seattle, Washington

The System Performance Analyzer (SPA) was designed to provide accurate real time
information about the operation of complex systems. It is currently being developed for
use on the Airborne Data Analysis/Monitor System (ADAMS), a ROLM [666 based system
used by Flight Test.

It uses an external processor to operate an intelligent, simulated control panel. Also
provided are functions to trace operations, determine frequency of use of memory areas,
and time or count user tasks in a multi-task environment. This augments the information
available from the standard debugger and control panel, and reduces the time and effort
needed by ROLM 1666 users in optimizing their system, as well as providing documenta-
tion of the effect of any changes.

This paper discusses the design of a System Performance Analyzer, a tool to evaluate the
operation of a relatively complex computer system. It provides information on the
operation and state of the system under study.

The System Performance Analyzer (SPA) is being developed for use with the ADAMS
(Airborne Data Analysis/Monitor System) currently in use by the Boeing Company. It is
an attempt to integrate the tools now used to provide information about the system.
These tools are the control panel, the software debugger, a Boeing-developed timing and
instruction counting histogram analyzer, and a commercial trace analyzer.

The ROLM 1666 Control Panel provides a number of functions useful in testing the
ADAM System. The address display indicates the area of program running. Status lights
show the mode of operation. The data display can be programmed to provide
information. Hardware breakpoints can be used to stop program operation without
loading the debugger. Unfortunately, it is somewhat awkward and time consuming to
use.

The software debugger is also used extensively for system development. It allows the
user to examine and change memory locations, accumulators and registers. It also
provides eight breakpoints for interrupting a program at a given memory address. It has
a number of limitations that severely limit its usefulness. It consumes system resources,
does not provide time-dependent information, and often a program will run differently
under breakpoint control than when running normally.

In an effort to provide more information about the dynamic operation of the system,
Boeing developed a histogram and timing analyzer. This is a hardware box that connects
between the control panel and the CPU of the system and allows a second computer to
monitor the system operation (see Figure |). This box provides two functions. In the
histogram mode, the analyzer CPU periodically samples the instruction being fetched by
the system CPU. A map of memory usage is then built up. This allows the user to see if
excessive time is being used by a small section of programming. The timing mode allows
the user fo monitor the time necessary to run a section of code with a resolution of ten
microseconds. This provides the user with the knowledge of what procedures need
streamlining. Although it provides only limited information, it demonstrated the ease of
use and real time information available by coordinating computer control.

33

34

A trace analyzer provides a history of operation. By monitoring the bus it becomes
possible to see what caused the arrival at a given state. Although this is a useful tool,
once again difficulty of use and interpretation limits it to special situations.

The usage of the previous tools pointed out certain things:.

1) The correct tool must be used to solve a given problem (i.e. the software debugger is
not useful for solving timing problems).

2) The tool must be easy to use (i.e. the trace analyzer, which must have a number of
lines individually connected, is rarely used).

3) It must be easily interpreted (the oscilloscope display of the trace analyzer also
discourages users).

Thus, it became necessary to provide one major easily used tool to provide all the
functions previously available (see Figure 2), as well as being flexible enough to meet
new ones. The following tables illustrate the primary functions performed.

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

2)
3)

TABLE |
FRONT PANEL

Monitoring instruction addresses as accessed

Monitoring data addresses as accessed

Starting, stopping and continuing execution

Resetting the status

Setting and clearing hardware breakpoints

Executing instructions external to the computer memory
Examining and loading memory

Examining and loading the accumulators

Examining hardware status

Single stepping through the program

TABLE 2
HISTOGRAM

Counting the number of times instructions in a given area
are executed

Measure time spent in sections of program flow

Measure time spent in executive and individual user modes

TABLE 3
DEBUGGER

1) Search memory for matching words/bits
2) Have multiple, counting breakpoints

3) Format data output

TABLE 4
TRACE

The analyzer will store 1K sequences of instruction
addresses, before, after or split on each side of a

specified instruction execution.

The initial design of the SPA was then undertaken with these considerations. The basic
design would be as shown in Figure 3 in order to simplify design and programming. A
ROLM 1666 was selected for use as a control computer. Since one ROLM computer would
obviously not be fast enough to monitor a second ROLM, the monitor electronics would
be built using high-speed, discrete logic. This logic would include its own memory
optimized to retain the state of the object machine during operation.

The control electronics were further sub-divided to allow for future changes or
expansion. The hardware thus consists of the object computer and its associated
peripherals, the object computer interface, the control electronics, the control computer
interface, and the control computer with its associated peripherals (see Figure 4). This
design permits replacing the control or object computers without redesigning the entire
analyzer. Only the interface would need to be replaced.

The object computer is slightly modified by the addition of logic to produce necessary
signals. These include timing signals, such as the start of an instruction, and condition
signals such as the issuance of a program flow change instruction (JST, JMP, RT, etc.).
These signals are sensed by monitoring a subset of the microcode instruction lines.
Other important timing and condition signals, as well as the address and data bus, are
available on the control panel bus. On the control panel bus are control lines that allow
command of the object computer (see Figure 5). -These are buffered and multiplexed to
allow normal display functions of the front panel while making them available to the
control electronics. This allows the computer to function normally at full speed while
being monitored by the control electronics.

The control electronics are fast enough to respond asynchronously to microcode
sequences within a single instruction. The major component is a number of event
registers,

The SPA has eight (8) event registers. Each register may be used to define an event on
the object computer. An event is said to occur if all of the "conditions" specified in the
event register occur simultaneously on the object computer. Each event register may be

~

35

36

set up to recognize all of the following conditions on the object computer as being
TRUE, FALSE or DON'T CARE.

I} Address within a specified range

2) Executive mode or user mode

3) Addressing mode (instruction fetch or data addressing)
4) Memory write operation (STORE, INCREMENT, etc.)
5) Data channel activity

6) Interrupt activity

7) Floating point processor busy

8) Program flow change instruction (JUMP, JSR, INT, etc.)
9) Carry bit

10) Overflow bit

1) Expanded memory

12) Interrupt branch mode

An event register may also set a bit to inform the other seven event registers upon the
occurrence of an event. This is done with eight additional condition bits. Consequently,
there are 20 condition bits associated with event register, the |2 bits described above
and the eight bits indicating whether an event has already occurred on any of the eight
event registers. The event registers may also be re-enabled by other event registers.

Description of the event aloneiis by first selecting conditions of interest with a |6-bit
mask register. Then the user specifies the values of those conditions which are of
interest to him (0,1) and stores these values in the condition register. If address ranges
are of interest, it is necessary to set the upper and lower bounds of the address register.

Also associated with each event register is a |6-bit counter which is decremented each
time an event occurs and which may be programmed to produce some action when it is
decremented through zero. This counter must also be initialized.

Finally, the user must select the action he wishes to take place when the event occurs.
These actions are as follows:

I} Stop the object machine
2) Activate or deactivate a special function (described later)
3) Set condition bit informing other event registers of this event

These actions are selected by control bits in a control word. To summarize, an event
register consists of the following six components:

[) Condition Word (32 bits)

2) Condition Mask (32 bits)

3) Upper Instruction Address Bound (16 bits)
4) Lower Instruction Address Bound (16 bits)
5) Upper Data Address Bound (16 bits)

6) Lower Data Address Bound (16 bits)

7) Data Written (16 bits)

8) 16-Bit Auto-Decrementing Counter

9) Action Control Bits

The user can think of each event register as operating according to the following logical
diagram (Figure 6).

The special functions provided are of three types. One is the timing or counting function.
This provides a count of the number of instructions, or the amount of time between two
selected events. The two methods of timing are provided to measure activity of the
two concurrent processors, the DMA and the floating point (see Figure 7).

A second function is the histogram. This increments a local memory address represent-
ing an area of the object computer's memory (see Figure 8). The histogram count is
provided by an event register. This makes it possible to count subsets, such as DMA
accesses, separately.

The third major function is a trace analyzer (see Figure 9). This provides a record of
addresses accessed. Operating in one of three modes, it will trace all memory accesses,
instruction fetches, or program flow changes. The memory is a IK circular buffer, wide
enough to hold address and state information. The buffer will sample continuously.
When triggered by an event register, it will count up to 1000 more accesses and then
freeze the buffer. These special functions can be started and stopped under control of
the event reqgisters,

The interface between the control computer and the control electronics is quite simple.
An 1/O bus repeater in the control computer brings the signals out to the control
electronics. Here, the signals are buffered and control logic decodes the appropriate
registers 1o load (see Figure 10). The interface also loads to commands to be transferred
through the control panel interface.

The user interface is a software package resident on the control computer. This allows
the user to issue high level commands to set up the control electronics and the object
machine, and to format the results according to his needs. This package is shown and
explained below and in Figure |1.

The software for the SPA is the SPA software manager (SPASM). This consists of three
major modules as shown in Figure |I. The user communicates with the system using the
command language and the report generator.

The SPA control electronics will be essentially a passive device under direct control of
the control computer. Consequently, the control computer will contain a comprehensive
set of software modules which implement the SPA functions. The control computer will
also interface directly to the user in an interactive mode of operation. The user will
communicate requests to the control computer in a high-level control language and these
requests will be translated into commands which will be issued to the SPA control
electronics.

The SPA software manager (SPASM) will use named variables and logical constructs to
coordinate a series of sequential tasks. Each task will perform one function and will
consist of a series of elementary commands to the control electronics.

Certain commands may instruct the SPA control electronics to pass information
describing the state of the object machine back to the control computer. For example,
the control electronics may be instructed to identify certain user-specified events and to
interrupt the control computer upon their occurrence. A set of utilities will exist on the
control computer to handle this sort of input from the control electronics and to
translate them into a form readable by the user. The SPA software will consist of the
following primary components:

37

38

) Operating System & Utilities

2) Control Electronics Interface Modules

3) SPA Software Manager

4) User Interface Modules

5) Software Modules Specific to SPA Analysis Tasks

Get User Info - This module communicates with the user to control the SPA functions.

Get Program - This module accepts a string of commands from either the console, from
memory, or from a disk file.

Get New Info - The program commands are examined and any information or parameters
necessry for operation are requested from the user.

Save PCM - The complete program is optionally saved in source format as a disk file.

Set-Up Control Electronics - This module manages the SPA control electronics.

Translate PGM - The program is translated into a series of machine steps. These steps
include loading the control electronics registers, interrogating the control electronics to
obtain information and sending the information and formats to the report module.

Load SPACE - This module loads the registers of the SPA control electronics necessary
to perform the current operation.

Get Results - The SPA waits until signaled that information is available. Whatever
registers or memories are then read to provide the report module with necessary
information.

The commands are given through a pseudo-language.

It allows the user to write, save, and run analysis programs using a System Control and
Analysis Language (SCALE). SCALE programs are a set of procedures consisting of
definitions and statements. SCALE is based on "snapshots" of the state of the object
machine, one taken for each instruction executed by the object machine. When the state
of the object machine matches the conditions specified in one of eight event registers,
an event occurs. These events activate the SCALE program.

A SCALE procedure is organized as follows.

Procedure name Name of procedure

Define Definition section.

Variable var | ,var2,... All variables must be named. All are octal integers.
Event event name(i)

Condition These conditions describe the state of the object
condition a machine for an event to occur.

condition b

Action The actions describe what effect the event will have.
action a

action b

Event event name(i)

Function function This is for special functions. The information depends
information name(i) upon which functions are used.

information

End Define

ON event namef(i) Immediate transfer to new procedure upon event,
ON DO procedure name(x) These are listed in order of priority.

Start Starts object machine.

Wait Waits for event to occur

Statement | Start point for program after occurrence of event
Statement 2 other than those causing immediate transfer

Final This terminates the procedure.

End Procedure

A SCALE program will consist of a main procedure and # or more called procedures.
Called procedures can cancel or redefine events and can call other procedures. Upon
return from a called procedure or termination of a series of statements, the procedure
will re-enter the wait state until the occurrence of another event.

Thus a SCALE program would provide the flexibility necessary to obtain full usage of the
SPA hardware. A procedure could wait for a choice of events, depending on the event.
The SPA could then be reconfigured, the object machine restarted, and any appropriate
reports generated.

There are a number of considerations for the future. The first is to replace the ROLM
1666 as the control computer. The loading of registers is obviously something that can

39

40

be done by a microprocessor. This in turn would make possible a considerable reduction
in size. A sufficient reduction in size would make possible airborne use, allowing studies
to be made "on the job". A final modification would be to make this device operational
in a multiprocessor configuration. This, of course, would call for major redesign.

This has been a description of a tool for analyzing the operation of a complex system.
By combining fast, simple registers with a sophisticated minicomputer, we are able to
operate our system without restraints and still monitor it as the instruction level.

¥

. “OBJECT

* . "COMPUTER

17 CONTRO

Figure 1

PR

Ly

CUNTROL
PANEL

" "DEBUGGER

= .",’ ~ g ‘

-

L

F -

L d gy

- HISTOGRAM =

Figure 2

OTHER
FUNCTIORS

1

Object
Machine

]
c
h “
€|l e
ol
[k
-
sidruaajuy Qﬂv(
g [T uoa4Lg (g
nnu,. U eleg 5
] S
[=4 ™ Lauuey) ejeq w_ m .
<] m 2% In) ejeq I~ S 4|ﬂﬂﬂ”-
.m“ m .m.m 5 MRS mp.n J03 Luoy
> rO.. mJ 133135 "Fog s% 198198 = 203 4uoy .C..m_
CVu.. H o <~ *6ay 8 oE
r S d ey
:) e o Jo® :z_m;L
=]] %) e3eg Sy oo
S{eubis doag
1043u0)
N PJON [C13U0) (auvg Fuody 0:49.».
paddea),

User

Front Panel
Signals

Figure 4

42

et

Monitor
Signals

Sto

Front Panel
¢ Contro) Word

CONTROL
COMPUTER
INTERFACE

r

2
s I
g
< Fi t
F. P. Select (—E,;—‘;:]—-
Signals
4 [
y l y
Buffer Buffer
4 o 4 4
8 ff af R
a o G -~ gy P
£.2 cw 52 ~<
L Ew»n -2, 4 h
Trapped Front Panel
Signal Interface Front
Buffer Panel
Object Computer
Figure 5
ADDRESS CONDITION
LOGIC LOGIC
OBJECT
COMPU'LER
INTERFACE _;
STATE DECISION
; REGISTER LOGIC
EVENT .
1 1STORY COUNTER
ACTION
SPECIAL
FUNCTIONS
Figure 6

43

44

COMPUTER
INTERFACE

. INTERFACE

COBJECT
LOMPULER"

1-'.:" et -
o CONTROLl
. o LogIC ot
Figure 7

V" . -,f ,ﬁ
Y ..\.-LQ,_,'.-__ ‘.'- I ifi‘....‘) ,_\i “0!-. OO

a"o

- e b

- J_,‘.’

-.a-lﬂ'

* CONTROL

- .. COMPULER

~ INTERFACE .

Jh'ﬁ

: '--'/-‘ l-r
:

h\\.

. L
e a T
v

. g oy
T e "'-'.) @t .\..,t.

Fey ;;~ ﬁﬁuﬂ"é

.-r, - '&'-;" peor .

= S ._.,.‘,.-_.., T e :.

v S5
Mt‘MORY LN ‘,'-1 "o, '_"

R Ia A
. ,(_\.- .

CONTROL

LOGIC H*:;;{.“

Figure 8

. . -

e . s O
- e ==
e L
2 CONTROL™™ i’

3W'COMPUTER

W"”* :w'fz ';

INTERFACEE

OBJECT
COMPUTER
INTERFACE

TRACE
MEMORY

CONTROL
N
COUNTER COMPUTER

T INTERFACE
. v _

CONTROL
LOGIC

Figure 9

Control
Computer
1/0 Bus
Repeater

— ———— " Buffer

A

» Interface [

I Y l 7 3

' Control

Logic

A y

Interrupt
Register

Register
Decode

1]

1L Interrupts

l l v v v

Data Register Control Data F P
In Select Signals Out Eon;rol
or

Figure 10

45

46

SPA

Set Up
et Generate
Control
?::E. Electronics Report
Get
Get Get New Save | | XLATE Load Get Add'1 Format ;rog:tt:e
Program Info. PGN. PGM. S.P.A.C.E. Results Info. ep
Figure 11

ON-BOARD COMPUTER PROGRESS IN DEVELOPMENT
OF A 310 FLIGHT TESTING PROGRAM

Pierre Reau
Operations Department, Flight Test Management
Aerospatiale
France

INTRODUCTION

Aerospatiale, a French national industry, was founded on January 1, 1970, as
a result of the merging of the formerly existing firms called Sud-Aviation, Nord-
Aviation, and Sereb.

In 1979 the company was ranked 20th in France, employing 33 000
people. The same year its turnover figured up to 11 billion francs (about 2 billion
dollars) with a 19.4% expansion rate, and 46% of its sales as exports. Its
activities span four divisions:

Aircraft
*Helicopters
-Tactical missiles
Ballistics

Within the aircraft division, the Flight Test Management has been involved in
instrumenting, designing, and conducting flight tests for the last 35 years. Work
was invested in several aircraft: the Armagnac in 1949 (a long range, four-engine
aircraft), the Grognard and Cl170 Magister (military Jjets), and the Caravelle in
1955 (a short range twin-engine jet). It also contributed to the flight tests per-
formed on the Concorde in 1969 and the A 300 starting in 1972.

For the development and the final airworthiness certification of the first
option of Airbus A 300, the Flight Test Group devoted 1413 hours of flight time to
four aircraft over about sixteen months.

It has been estimated that both the developing and certifying of the Airbus A
310 with both available versions (Pratt and Whitney or General Electric engines)
will require 1300 hours of flight time spent on five aircraft over
thirteen months. Implementation of this program will entail spending 2 million
dollars on on-board computer equipment and 1.5 million dollars on operational
staffing as well as on a ground computer operational infrastructure.

AIRBORNE COMPUTER OBJECTIVES

The decision to install mini-computers on board the first three A 310 airplanes
was made in 1979 in order to:

(a) Assure the flight safety by exercising a limit check of a given set of
parameters

(b) Improve the efficiency of flight tests and allow a cost reduction by

giving the crew a comprehensive look at the flight situation (this allows
for dynamic decision making during the flight)

47

(c) Perform the tests analysis on an external basis by using the data recorded
on the on-board flight tapes.

The ROLM computer was selected in 1979 from among several U.S. and European manufac-
turers. The ground-based system was installed in early 1980.
SIMULATION
Purposes
Prior to the writing of the technical data we felt it was first necessary to
simulate the on-board computer using a SEL 86 Computer (Systems Engineering Labora-
tories). The simulation design consisted of:
(a) Optimizing the sequencing of the different phases to minimize computations
and eliminate duplications. This allows a fast reduction of memory require-
ments and improves the utilization of CPU time

(b) Estimating the program size given the complexity of the task

(c) Using a SEL 86, the characteristics of which are well understood, to set a
baseline to be used as a criterion for the selection of an on-board
computer

(d) Optimizing the call and scheduling of tasks to simplify the flight observer
activities

(e) Providing an analyzing department with user-oriented output formats

Equipment Used
Simulation has been performed on a SEL 86 (fig. 1), involving mainly:
*A central unit with a 64-K-word (32-bit) memory and a console
*A 900 lines/minute capacity printer (132 c/line)
*A 400 cards/minute capacity reader
- Two magnetic tape units (1.14 m/sec, 40.64 bits/m)
-One 100-megabyte disk unit as a back-up to the Real Time Monitor System

*One reading unit for the flight tapes recorded on board the TSS and A 300

Simulated Programs Characteristics

The processing programs were written in assembly language although an optimized
SEL Fortran was available. They performed computations and provided f£light data
output results. Not all possible programs were simulated, only those directly
related to the following flight phases: take-off/landing, cruise, and rate of climb.

48

All acquisition phases for the selection of samples to be processed, the conver-
sion into industrial units, and the data transfer were timed using the SEL 86 internal
clock.

Conclusions Drawn On Simulation

The on-board computer simulation, implemented in the SEL-86, required the
adjustment of several SEL-86 system parameters. These adjustments were primarily
made to the simulation program's data transfer phases onto computer-compatible
tapes and output phases to oscillographic recorders. Before these adjustments,
the simulation program had been run sequentially at the maximum speed possible.
The simulation has thus disclosed the following points:

(1) It is better to cut down the flight tape reading speed and perform several
real time treatments simultaneously in lieu of a serial treatment

(2) What had been simulated would be realistic even if the expected mini-computer
was up to three times slower provided a real-time-oriented system had been
used with a fast memory capacity, sufficient mass memory, and multiprocessor
and multiprogram function capabilities, connected to several peripherals
like printer, plotter, and monitor

SHORT DESCRIPTION OF THE AIRBORNE EQUIPMENT ON THE A 310

Flight tests will be conducted with five aircraft, three of them fully
equipped with airborne computers., The equipment includes the following (fig. 2):

800 to 1400 measurement chains, or numerical bus delivering analog and digital
data

- Two digital acquisition systems with a sampling rate capability ranging from
1 to 128 samples/second; each acquisition system delivers a message of 32 000
12-bit words per second

*The ROLM system is designed for real time processing and visualization of data
on screens (this package will be further described) and is linked to one of the
two acquisition systems

*An analog display onto a trace recorder

*Digital display panels for warning, etc.

*Closed-circuit television panels

‘Two flight tape transports for 2.5-cm-wide (1"-wide) magnetic tapes providing
a six-hour recording of numerical messages coming from the acquisition system

and used for replay on the ground computer

*One analog acquisition system with corresponding recording units for measure-
ment chains having a 2-KHz band pass or more

49

CUB DESCRIPTION
The on-board Universal Calculator consists of two parts:

(1) The ROLM 1666 system

(2) The visualization system using an AFIGRAF CRT connected to the ROLM 1666

1666 Airborne System

>

Each airborne system (fig. 3) includes:

+Two ROLM 1666 central units, one equipped with a 32-K memory (CPU 1), the other
with a 64-K memory (CPU 2)

*Two 2150 I/0O chassis. One is used to input the flight data obtained from the
acquisition system. All peripherals and the warning transmitter are connected
to the other unit (CPU 2)

*Two ROLM 1648 control panels
-One floppy disk system using 3 floppy disks (1 master 3385 and 2 slave 3386's)

*One Versatec 7200 printer plotter (printing speed 1000 lines/min, 132 charac-
ters/line)

‘One ZIP 30 typewriter used as a console

The CPU's are linked by a ROLM model 3550 Multiprocessor Communications Adapter.

Both the data transfer towards the visualization system screens and the input
of the data provided by the airborne acquisition system are performed by direct memory
access using 3564 Data Channel Controller interfaces. A 3549 System Interrupt card
allows proper timing between the data input and its subsequent use in the ROLM program.

Airborne Visualization Kits

This system (fig. 3) is designed by a French company (La Compagnie des Signaux
et d'Entreprises Electriques), a subsidiary G3S INFODIF group. Each airborne outfit

includes:

-One screen processor equipped with 4000 words of 16-bit memory and a card that
generates interrupts, i.e. end-of-image interrupt

- One screen demultiplexer which is used to separate the two images, which are
both stored in the single processor's memory

-Two Hewlett Packard 1311A CRT's (21 cm x 21 cm with a definition of 1024 x 1024
points).

-One display analyzer capable of printing hard copy from one CRT (it should be
noted that the monitor generating a hard copy is frozen for two seconds only)

50

-One Tektronix 4632 hard copy unit

The screens are refreshed at a rate of 50 times/second, thus allowing for
a visualization of motion displays and still offering the features of a continuous
phenomenon. The data transfer between the ROLM memory and the display is achieved at
the maximum permissible speed allowed by the data channel controller.

Ground System

This system is used for the program implementation (fig. 4). In addition to the
airborne system we have:

One 3341 moving head disk system

-One 3367 commercial MTU

Two 3302 video terminals

One alphanumeric keyboard for the AFIGRAF System
-One light pen

The mag tape is used to communicate between the CUB and the other ground computers,
SEL 86 and SEL 32/77. The disk unit is used to support the RMX/RDOS system.

Flight Informations Input

The airborne acquisition system (fig. 5) provides two digital messages each
consisting of 32 000 12-bit words/sec. The long cycle is made up of 16 mean cycles
and each mean cycle is made up of 8 short cycles.

The information is stored in the 32-K-word memory, each 12 bits being stored in a
16-bit word using one of two 3564 Data Channel Controllers, each 1/8 of a second in
flip-flop mode (called a double cycle).

One interruption at the start of the long cycle is sent to the central unit 1
while the first word of the long cycle is being stored. An interruption of the
double mean cycle is effected while the first word of the double mean cycle enters.
Interruptions are generated by an interface 3549.

Switching of messages on the 3564 interfaces and generation of interrupt signals
on the 3549 are handled by a special module. We preferred this solution to any other,
using all possibilities offered by the DCC. It permits a better control of the
validity of the messages and increases data flow at the DCC entry, modifying, if
necessary, time intervals of commutation.

PROGRAM SPECIFICATION

Programs are developed on the ground equipment, under RMX/RDOS. In-flight, they
are run under RTOS (fig. 6). We define two distinct categories:

(1) Permanent programs: They are permanently stored, whether active or not.
These programs are loaded automatically when the on-board system is started.

51

(2) Specific programs: Each is relevant to one type of test. Their executions
are temporary and are called up by the flying observer. They are activated
and stopped either by the observer or automatically.

Permanent Programs

(a) Sample choice: This program extracts in CPU 1 the samples required by all
the analysis programs and converts them into industrial units. To keep
computation time to a minimum, each sample is only extracted once per double
mean cycle and can then be used, if required, by all the analysis programs.

{(b) General performance: This program is designed to compute specific para-
meters like altitude, speed, and the Mach number necessary to most of the
other programs (number of inputs about 20).

(¢) Limit check: Parameters that are subject to a limit check are grouped into
basic lists to which complementary lists can be associated. Should a para-
meter exceed its limits, a warning is displayed to the crew. The parameter
values of both the basic and complementary lists can be output on the
printer on request. The list of parameters to be monitored can be modified
throughout the flight.

(d) Flight profile: This program stores the flight profile information at
regular intervals on floppy disks. A listing of the recorded values is
extracted after the flight, on the ground equipment. This information is
used by the data processing team. Throughout the flight the observer can
request this data to be displayed on the printer.

(e) Data visualization on screens: Two screens are used to display simulated
cockpit instruments, i.e. circular, linear, and digital indicators (fig. 7).
On one of the screens general parameters are given, showing the aircraft's
attitude, power settings, weight, flaps, etc. The remaining screen is used
to display specific parameters relevant to the test in progress. Through-
out the flight the observer may, at his discretion, change the format of
this last screen.

Specific Programs

These are temporary programs, applicable to different types of tests such as
cruising performances, quality of flight, etc. The method of calling, starting,
execution, and stopping is a function of the program. The ZIP 30 typewriter is used
to control the operations of the program, the modification of the basic parameters
list used in limit check, and the screen format.

Analysis Frequency and Program Execution Priority
The analysis frequency is not necessarily the same for all the programs. The
smaller this period, the higher the program priority. For instance, programs like

sample extraction and general performances computation are processed 8 times/second,
whereas the flight profile is only processed every 10 seconds.

52

TRIALS AWAY FROM TOULOUSE
During flight test trials away from Toulouse, the airborne CUB system will be

used to replay the flight tapes on the ground. It will then be posgible to analyze
some of the data after the flight.

53

54

|Processing

, 'DIRECT VISUAL

SEL 86

MEMORY: 64 K WORDS
52 BITS/WORD
CYCLE TIME: 600n/s
REAL TIME CLOCK
64 INTERRUPTS

CL0002YTLY /5.

DIRECT MEMORY INPUT

QUTPUT SYSTEM
Dcc DCC DCC bcc D ncc cc DCC ncc DCC (DCCDCC | DCC{DCCpec
11]12(15 [14]15 |16

TROOITIG/
TAPE

120x/c TExf

DIsC

2:100 M.3YTES

80.600 OurPuT/8

1.000.000 Taausrens/s

H

CEC |
[EG

DCC., Device Controller Channel

MHACS Multipurpose Acquisition and Control System

PDT . Pacallel Data Terminal

Figure 1

SCREEN

CARD READER

LINE PRINTLR

PAPER TAPE

SCHEMATIC OF THE FLIGHT INSTALLATION

L

HE

ASUREHENT

CHAINS

—

l ACQU LS
ARALOG

I TION URH
DIGITAL

1T]
BYS

[

—

CENTRAL ACQUIS

CENTRAL ACQUIS

unIT 2

UNIT §

ROLM
REAL TIME

BRUSH

DISPLAY L

eRT |
SYSTEH PARKNELS
MAINTENANCE _-J
| PARNELS

HAG TAPE

Figure

IANALOG SIGNALS ACQUIS SYSTEM (2 KHZ) J

|

PROCESSOR

HAG TAPE
REC

LIMITED TELEMETRY

CLOSE CIRCUIT
TELE VISION

2

CUB
ON BOARD COMPUTER (sYSTEM DIAGRArM)

FLIGHT OBSERVER TABLE

FLIGHT OBSERVER PANEL

SCRLLN
pemuLriPLEXOR|

SCRELN
PROCLISOR

LINL PRINTER|

fconrmor Panes)

CONTROLLER]
cCPy 2 cCPU 1
HEMORY HEMORY
G4 x womDS 82k woeDs
16 845 / W. 16 Bds /.
+ T+
iRLET 1/0 Direcr 170
ACCESS conrroLLR, Access F——{¢onrRoLLeH
MEHORY 2 _I MEMORY
- < FLIGHT
O 2" irad TEST INST,

FLOPPY DISC

[Ratn 1urcad]
Figure 3

CUB
GROUND COMPUTER (srs7er DiAGRAM)

7 l!

ScRLLN
PROCLSSOR

o T] []
[CONTRN, PARTL] LINE PRINTIR CONTROL PANEL
feowrms s e 7
cCPU 2 cCPRU 1
MEMORY HErORY
€4x worDs 52 % wueps
16 Buls /vy 15 Bis S
+ +
Dimecr 170 DiIRECT r/0
ACCESS ACCESS OnrROLLLR|
Aoy HMLMORY
] 2 _I 1
=)=
MJ l.m'J < 2 e
" — [TEST insT.
FlLorPY Disc

Disc HMAG. TAPE

Figure 4

56

(NPUT OF THE DATA (N 32 KW HEMORY ___

CYCLE ToPS
MAJOR NEAN CLOCK
l l |
[
1
[
1
4
ELECTRONIC
COMMUTATOR ——
le- INFORMAT |ONS
/ |
[
HAJOR [
CYCLE 1 l_ —
1T I
|
i
1
1
1
1
1 rst
1 17wom0 T T
| oN 3564 (2)
[

INPYT
N

RESULTS RESULTS
FROM FROM
CYCLE CYCLE
n-2 n-t

TO MEMORY 64K
.
Figure 5

CUB (onsoro corrurer)
REAL TIME PROCESSING

DLRING THE FLIGHT

11IT CHECK|
PROGRAM

FLIGHT
PROFILE
PROGRAMT

SENERAL
L RFORHANCE)
PROGEALT

PROGRAM

- ==
[« A!!!“
YELAL Turtt PROGEA
FLoPPY Disc DEVELOPEMENT [

Figure 6

ON SCRLEN
VISUALISATICY
PROGRAM

scrn;)

& A3I0ONS X FLIGHT N° XYZ] GMT 00.00.00 | FROGRAM XYZ OVERFLOW -

N (6} CAS (k) 350 0 10 20 30 ALT (FT)
37 : y : 10000 —
1 : : TAT (o
2] 400} {HDGe) 012 : 28
1< +1.0] { ROLL ATT (2) : 8000 '
o - : 07450
3007 \R‘/s SAT (°c)
. i 6000
ALPHA () WF%%—IZS—; Tw v Y -01.3
30 200~ U oo : RADIO
PITCH : #1205 Geetormereeren e st en e seeaenenens
20 — 100 — ATT) —n N ENG1 ENG 2
. J ——+———— I EPR 1.23 1.24
0 o _r ——10 EGT t°c) 345 345
] (R) H .
ssilpe -06T N1) 56.7 56.9
k025 vewn 1045 e IN2 () 79.0 78.9
o IF . . -30 -20 -10 O 10 20 30 FF (ke/m) 1234 1234
- SLATS! FLAPS AP 1s2 FD 1+2 : qp FUEL (ko) 2A
o= — 0 ARM ENG 3000 1 2 3000
6T =) : 11000 CTR 11000
20 -~ 15 :
i (DN) 20 : :
% GEAR UP NOEEEE: : :
foLL o °: : : TOTAL FUEL (k6) 43 000
— — —ROLL——: : :
b4 AWAS éééé“ b aTe SPD FUEL USED (ko) 00 000
—— SPD BRK__—. — :... .P.I-T-C-;-i---...-..P-I-[.C.;I.-.......-Y-,-\~W-----§ WEIGHT (KG) 132 000
———GRND SPOILER———: FfESL 1 TRIM 2 DAMPER : cg (/+ MAC) 36.5
Figure 7

57

NEW STARTS

IN RESEARCH AND DEVELOPMENT 1982

Joseph Grosson
Executive Director for Acquisition
Naval Material Command, Navy Department
Washington, D.C.

ABSTRACT

This paper outlines, in slide form, some areas of new U.S. Navy research
and development utilizing minicomputers.

59

60

NAVAL MATERIAL COMMAND

PERSONNEL SUMMARY Dute Aoproved
(M & Cv End FY- 81 Autbarzed)

4o Navsh Mool Commard o CHIEF OF NAVAL MATERIAL Cooe ol Noal Matgsul

CHM Proect Manaqus Offces 1031

RED Centers 20117 VICE CHIEF | DEPUTY CHIEF

Other Shone actmalms 380

Ax Systems Command 43410 DF NAVAL OF NAVAL

Electione Systems Command 3661 MATERIAL MATERIAL

Facikts Engneermy Commend 20 605

Sea Systems Command 101,050

Supphy Systoms Command 24 246 HEADQUARTERS

Totsl Nval Mateoal Command 210953 NAVAL MATERIAL COMMAND

PROJECT MANAGERS | I
Strategic Systems PM-1 SHORE ACTIVITIES
Tndent PM-2
ot Cruise Misarles JPM-3 R6O CENTERS STRATEGIC SYSTEMS SUPPORT
Anti-Submarine Warfare Systems PM-4 Au Deveiopement Contw, Wamnste, PA Astionautres Geoup, Pount Mugw CA
Sauth Navy Expansion PM-5 Ovid W Taylor Shp R6D Centrr, Brthesda, MO Gudnance Test Unt, Cape Canveral, FL
Weopons Cantes Chu Lok, CA

High Enetgy Laser FM-?_? Ocean Systems Cenler, San Diego, CA tve OMica, Sunapvate CA
Taencal Nud'es Weapang PM 23 Underwater Sysiems Center, Newpor, Al Palans Missde Fackly. Atlamx Chaskesion SC

Suface Weapons Centor, Dabigren VA
Casstal Systes Center, Panama Coty. FL

Personeel Research & Oevelopinent Conter, Ssn Diego, CA

Susiege Weapons Fackty. Pacilc, Bimerton. WA

In Drvelogmen: Sivtus

\OGISHC ACTVITIES

Industial Resources Datachment, Phdadeiphia, PA
Traming Eyuipment Centwr, Orlando, FL

(ADDU 1o CNM Tor Acquisitan Matiers)
Mantenance & Supply Support Ottice. Noifolk, VA
Mantenance Suppon OHice, Mechamcsburg, PA

Submanne Base, Bangoe Bremertan, WA
Submanne Support Base, Kiys Bay. GA

Tudent Refut Faciity Bangos. Sremertan. WA
Tident Trnmeg Fachity, Bango: Biemenion. WA

1

L

1

NAVAL AIR SYSTEMS
COMMAND

NAVAL ELECTRONIC
SYSTEMS COMMAND

NAVAL FACILITIES
ENGINEERING COMMAND

NAVAL SEA
SYSTEMS COMMAND

NAVAL SUPPLY
SYSTEMS COMMAND

SIORE ACIWITIS

Auistion Logtics Center

Au Rewuk facilities {6}

Logrstic Suppart Actwitus (2]
Prant Representatives {1

Test and Engineenng Actreriws {8}
Orher {5}

SHUHL ACTIVITIES

Systems Engaevnny Centors (4]
Systems Engineging Actwiry
Seconly Engweenng Conim
Spaca Systems Actanty

SHORE ACTIVINES

Regronal Feeld Dresions ()

Public Works Cemers (8]
Constiucnon Battabon Cenders [3)
Othcers w1 Charge of Constuctwon (5}
Diher (3)

SHORE ACTVITIES

Supervisors ot Shybuedeyg (15}
Shipyards {8)

Inactrvn Shep Faciitns {2)

Weapon Statons/Svpport Comtaes {6}
idnanct Statons (2)

Unéersea Wadnrs Station

Sea Suppert Comiers 2}

SHORE ACTIVITIES

Suppty Centers, Annexes {7)

Invaniary Contiol Pownis/Branches [3)
Flest Matenal Support Qftice
Conttacting Dticer |4}

Ful Actwilies (2)

Pubhcaions and Printing Acintas |5}
Resale Acinmues (28)

L

Combat Owechion Sysiams Actwites (2) Orher (B)
Tost and Enguneenng Actrvitas (B}
Plant Raprsaniaireas J4)
b (12)
Figure 1
SECRETARY
OF THE NAVY
UNDER-SECRETARY
OF THE NAVY
CHIEF OF NAVAL OPERATIONS
CNM
VCKM
PROJECT MANAGERS HEADQUARTERS
NAVAL MATERIAL COMMAND
Statagic Systems PM-1
Trdet PM-2
Joint Cruise Missiles JPM-3
Anti-Submarine Wardary Systems P-4
Smudi Navy Expansion PM-5
High-Energy Laser PM-22
Tactical Nuclewr Wpns PM-23

il

1

NAVAL AIR SYSTEMS
COMMAND

NAVAL ELECTRONIC
SYSTEMS COMMAND

NAVAL FACILITIES
ENGINEERING COMMAND

NAVAL SEA
SYSTEMS COMMAND

NAVAL SUPPLY
SYSTEMS COMMAND

Figure 2

CNM ORGANIZATION

CNM
Adm Whittle

VCNM DCNM
Vadm Travers 09 M. Colvard 03

I | | |

BIR. (RESOURCES
MANAGEMENT) DCNM (LOGISTICS) DCNM (RM & QA) OCNM (TECHNOLOGY)
Radm Bussy 01 Radm Mandeville 04 Mr. Willoughby 08 Radm Baciocco 07
BCNM (ACQUISITION) ACQUISITION
Radm Lewis 08 Review Board

EXEC. DIR. FOR ACQUISITION
Mr. Grosson 08B

ADMIN. OFFICE 036

TACTICAL EMBEDDED
ENERGY DFFICE COMPYYER PROJECT
Dr. A. Roborts 08E OFFiCE

Capt Boslough 08Y

| i | 1

ADCNM ADTAM
CONTRACTS & BUS. ACQL CONTROL - :';:I';M - . ADCNM
MANAGEMENT Cept Hueber 000 e ,T:" . G0 CENTERS
Capt Sansons 08C Mr. Ditrapani 0808 f. ek apt Parrish 8L

Figure 3

ALL NAVY R&D SUMMARY
PRES. BUDGET Jan 81 FYDP

FY 1980 FY 1981 Fy 1982

RESEARCH $214,941 $241,813| 9285177
EXPLORATORY

DEVELOPMENT $396,207 $459,648 $515,5217
ADVANCED

DEVELOPMENT $1,032,867] $1,244,114 | $1,692,597
ENGINEERING

DEVELOPMENT $1,851,932] $1,758,849] $2,021111
MANAGEMENT

& SUPPORT $424,944 $488,641| $595,344
OPERATIONAL

DEVELOPMENT $642,379 $702,044 | $755,932

TOTALS $4,563,2701 $4,895,109| $5,866,288

Figure 4

NAVY RDT&E PROGRAMS

FY 82
6.1 RESEARCH $285M
6.2 EXPLORATORY DEVELOPMENT $515M
6.3 ADVANCED DEVELOPMENT $1,692M
6.4 ENGINEERING DEVELOPMENT $2,021M
6.5 MANAGEMENT SUPPORT $595M

6.6 OPERATIONAL SYSTEMS SUPPORT $755M

Figure 5

$Bs
3.0}

R&D BUDGET
8.0

10—

6.0—

l 1 I | | | | | |
19 80 81 82 83 84 85 86 87 88
Fiscal Year

Figure 6

62

$Bs R&D BUDGET TRENDS

9.0 Selected Categories
/
/
/
/
/
3.0 /
Y
V4
v
rd
s
- o
[,/
P — (.4

10p———<""

’./_‘____// N

1

L l I 1 l | | | 1
79 80 81 82 83 84 85 86 87 88
Fiscal Year
Figure 7

NEW START SUMMARY

FY 1982
Category PE. NewP.E. Proj New Proj
6.2 EXPLORATORY 22 1 246 16
6.3 ADVANCED 141 13 343 23
6.4 ENGINEERING 98 6 284 28

Figure 8

63

FY 1982 0SD/OMB SUBMISSION
OCTOBER FYDP 18 SEP ‘80
6.2 PROGRAMS

PROGRAM TOTAL $ 549.695M
(BUDGET MINiMUM)

PROGRAM ELEMENTS 22
NEW P.E.s : 2
PROJECTS 246
NEW PROJECTS (FY 82) 16

Figure 9

NEW STARTS - PROGRAM ELEMENTS (6.2)

PE TITLE YEAR AMOUNT
62735N HIGH-ENERGY LASER FY 1981 $33.023
TECHNOLOGY
62768N DIRECTED ENERGY FY 1982 $10.173

TECHNOLOGY

Figure 10

64

FY 82 NEW STARTS - PROJECTS (6.2)

P.E. PROJECT TITLE
62757N RF57525 HUMAN INFO PROCESS IN (2
627580 MF58523 PERS PROTECTION & SURVIVAL
62758N RF58523 PERS PROTECTION & SURVIVAL
62758N MF58527 CASUALTY CARE
62758N MF58528 BIOMED EFFECT ON PERS PERF
62758N RF58528 BIOMED EFFECT ON PERS PERF
62760N WFB0531 FLEET LOGISTICS READINESS
TECH

627630 ZF63500 USMC PERS RESQURCE MGMT
62765N WFB5573 PYROTECH TECH & COMPONENTS
62768N RFE8311 SYS INVST DIRECT ENERGY WPN
62768N RF68342 ADV CHEM & EXCIMR LASR TECH
62768N WF683u2 FREE ELECTRON LASER TECH
62768N SF68343 CHARGED PARTICLE BEAM TECH
62768N WF68344 HI POWER MICROWAVE TECH
62768N RF68345 ADV LASER OPTIC TECH
62768N WFG68345 PULSED POWER TECH

Figure 11

ACTIVE ADJUNCT TO UNDERSEA SURVEILLANCE

ALTERNATIVE TO PASSIVE SURVEILLANCE TO COUNTERACT REDUCED RADIATED

SIGNATURES.

A FIVE—ELEMENT SYSTEM DEMONSTRATION WILL BE CONDUCTED IN UTILIZING
HYDROACOUSTIC SOURCES IN CONJUNCTION WITH A MID-FREQUENCY TOWED
ARRAY DEPLOYMENT FROM THE SAME SHIP.

ELEX/NOSC $2,500K (FY 82)

Figure 12

65

66

ADVANCED ELECTRICAL PROPULSION SYSTEMS

ADVANCED ELECTRICAL PROPULSION SYSTEMS OFFER REDUCED COST
AND MORE FLEXIBLE ARRANGEMENTS FOR SHIP AND SUBMARINE CONSTRUCTION,
RECENT ANALYSES HAVE SHOWN THE POTENTIAL FOR A 207 REDUCTION 1IN
OVERALL SURFACE SHIP DISPLACEMENTS FOR COMPARABLE RANGE/PAYLOADS,

SEA/DTNSRDC $4,700K (FY 82)

Figure 13

HIGH - CAPACITY LOW-—VOLUME BATTERIES

A HIGH-RATE LITHIUM THIONYL CHLORIDE BATTERY IS A CANDIDATE

POWER SOURCE FOR TORPEDO PROPULSION. IT HAS POTENTIAL FOR HIGH

POWER, WAKELESS, SILVER-FREE ENERGY SOURCE.

SEA/NOSC/NUSC $800K (FY 82)

Figure 14

MARINE CORPS WEAPONRY IMPROVEMENT

IMPROVE BATTERY FIRE POWER BY ADAPTING ZUNI ROCKETS TO A
GROUND - BASED ROLE AND DEVELOPING LIGHTWEIGHT CARRIAGES FOR LARGE-
CALIBER GUNS. AN [IMPROVED HAWK SYSTEM IS ALSO UNDER DEVELOPMENT
AS A HIGHLY MOBILE AIR DEFENSE SYSTEM CAPABLE OF ENGAGING
MULTIPLE SIMULTANEOUS TARGETS ON -THE BATTLE FIELDS OF THE 1980's

AND 90’'s,
NSHC - DAHLGREN $4,780K (FY 82)

Figure 15

IMPROVED METAL MATRIX COMPOSITES

- SHIPBOARD ANTENNAS - RADAR PEDESTALS
- MISSILES AND AIRFRAME STRUCTURES

LASER - ASSISTED METALWORKING

- AUTOMATED WELDING OF SHIP STRUCTURES
- CORROSION-EROSION - RESISTANT SURFACES - GEARS/BEARINGS:

RAPID SOLIDIFICATION PROCESSING OF ALLOYS

- HOMOGENEOUS CORROSION - RESISTANT ALLOYS
- SHIP PROPELLER AND IMPELLER BLADES

Figure 16

67

68

IMPROVED METAL MATRIX COMPOSITES

METAL MATRIX COMPOSITES, WHICH PROVIDE LOW DENSITY, STIFFNESS,

STRENGTH AND THERMAL STABILITY ARE BEING DEVELOPED FOR APPLICA-

TION TO KINETIC PENETRATORS, SHIPBOARD ANTENNAS - RADAR PEDESTALS,

TACTICAL MISSILES AND AIRFRAME STRUCTURES.

SEA/NSWC $3,500K (FY 82)

Figure 17

LASER~ ASSISTED METALWORKING

BY COMBINING THE DEMONSTRATED HIGH- SPEED PROCESSING CAPABILITY

OF THE LASER BEAM WITH AUTOMATED ADAPTIVE CONTROLS, LASER -

ASSISTED METALWORKING IS BEING DEVELOPED FOR APPLICATION TO SHIP,

SUBMARINE AND AIRCRAFT PRODUCTION AND REPAIR,

SEA/NRL $150K (FY 82)

Figure 18

RAPID SOQLIDIFICATION PROCESSING OF ALLOYS

CHARACTERIZE THE UNIQUE MICROSTRUCTURE AND PROPERTIES RESULTING FROM RAPID
SOLIDIFICATION PROCESSING OF METAL ALLOYS. IMPACTS:

o GAS TURBINE ENGINES

o CORROSION- RESISTANT ALLOYS AS REPLACEMENT FOR STAINLESS

STEEL
o NEW STRUCTURAL ALUMINUM ALLOYS FOR INCREASED TEMPERATURE
APPLICATIONS
AIR/NRL/DTNSRDC $850K (FY 82)

Figure 19

OSD/OMB SUBMISSION

OCTOBER FYDP 18 SEP 80
6.3 PROGRAMS

PROGRAM TOTAL

(BUDGET MINIMUM) $ 1,487.977M
PROGRAM ELEMENTS 141
NEW P.E.s 26
PROJECTS 343
NEW PROJECTS (FY 82) b3

Figure 20

69

70

P.E.

63207N
63216N
63217M
632170
63262M
63267H
63308N
63313N
63369N
63371N
63506N
63520N
63523N
63524N
63533N
63534N
63536N
63564N
635730
63589N
63589N
63589N
63589
636350
63707N
63707N
63710N
63710N
637100
63710N
63710N
637208
63720N
63730M
637201
63730M
63730M
63730M
63731M
63733N
83733N
63733N
63733N
63733N
63763N
63784N
63785
63785N
63785N
63785K

FY 82 NEW STARTS - PROJECTS (6.3)

PROJECT

W1399-0S
W1401SL

WO885SL

Koegzcc

K0592-SL
W1253-AA
HO440-AA
HO302SH

W1446-TH
R1452-SB
$0225-AS
X1286-CC
$1332-SL
S$1440-AS
$1417-SL
$0308-SH
S0854-AA
S1357-AS
S1314-SL
S1448-SL
$1449-SL
$1450-SL
S1451-SL
€1295-AH
£1383-PN
21385-PN
R0O126-~PN
T1393-PN
W1230-PN
21170-PN
#1392~-PN
#1382-PN
£1388-PN
C0066-CC
€0937-SL
€1296-CC
C1421-CC
C1422-CC
Co064-~CC
W1208-PN
W1209-PN
W1389-PN
K1390-PN
W1391-PN
X1319-08
X0756-0S
RO119-DS
R0120-SN
WOBUE-TH
H0659~TW

TITLE

NOSS

HELO AIRCREW SURVIVABILITY
MOD AVIONICS PKG

INFO HAND SYS

A/C & ORDNANCE SAFETY
NATO FUTURE IDENT! SYS
RAMJET MISSILE TECH

IR ATTACK WEAPON

MRASM (IIR)

GEO SAT

SURFACE SHIP TORP DEF
NAVY FUTURE COMM SYS
SWATH

EMSP

SHPBD CORROSION CONT

SES

S0Js

FFX

ELECTRIC DRIVE

NON-AEGIS RADAR DEV
LIGHTHEIGHT AEGIS

COMBAT SYSTEM INTEGRATION
LIGHTHEIGHT ~SONAR

ARTY DIFIS

CIVIAN PERSONNEL [SSUES
COMPUTERIZED ADAPTIVE TEST
OPERATIONAL DECISION AIDS
MICROFILM TECH FOR RECORDS
DESIGN FOR MAINTAIN

HUM PROC AUTO DATA BASE
PERFORMANCE ~ ENHANCEMENT
FUNCTIONAL CONTEXT TRN

LOW COST MICRO COMP SYS
NON COMM ECM SYS

MOBILE EW SUPP SYS

ALL SOURCE IMG PROC

LTHT BATTLEFIELD SURV RADAR
LTHT SEIS/ ACOU PASS DEV
MAR INTEG PERS §YS

COMP GEN IMAGERY FOR SIM
DYNAMIC SCENE VIS DISPLAY
VTOL VTRS LASER DISPLAY
MULTEI-SPECTRAL IMAGE SYS
HELMET - MOUNTED DISPLAY
TACT SURVEILLANCE SYS

LTHT UNDERSEA SENS COMP
SURVEIL ENVIRON ACOUS SPT
TAC ASW ENVIR ACOUS SPT
ABN ELECTRO/OPTICAL C/M
E/0 GUIDED WPNS C/H TEST

Figure 21

NATIONAL OCEANIC SATELLITE SYSIEM (NOSS)

PE: 63207N SUB PROJ: W1399-0S

DESCRIPTION - A TRI-AGENCY PROGRAM (NAVY, NASA, NOAA) TO DEVELOP A
CAPABILITY TO UTILIZE SATELLITE-BORNE SENSORS, GROUND PROCESSING AND
SPACECRAFT CONTROL CENTERS, DATA ARCHIVAL AND PRODUCT DISTRIBUTION
SYSTEMS TO MEET NAVY FLEET REQUIREMENTS FOR GLOBAL REAL-TIME OCEAN
SURFACE DATA (SST, WINDS, ICE, WAVES, TOPOGRAPHY)

COGNIZANT ACTIVITY Y FY- U
NAVAIRSYSCOM (AIR-3706) $(M) 46.122
Figure 22

NOSS SYSTEM DESCRIPTION

/

é JINC 7 FLEET

\
\\ //
i
a

PEARL 3 FLEET

ORVA 2 FLEET ’ROTA 6 FLEET

CONSTELLATION : 2 SATELLITES (ONE ON ORBIT SPARE)

LAUNCH : SHUTTLE 86 + 87 WITH 5 YEAR PROGRAM LIFE
ORBIT :+ POLAR SUNSYNCHRONOUS

ALT : 700Kn

COMURICATIONS: Secins vt THRS 33 SEATER- ek ™"

Figure 23

i

72

INFORMATION HANDLING SYSTEM

P.E. 63217N: ADV. AIRCRAFT PROJ. NO. Wo0892-CC

SUBSYSTEMS PROJ. TITLE: INFORMATION HANDLING
SYSTEM DEV. & EVAL.

THE INFORMATION-HANDLING SYSTEM PROJECT WILL PROVIDE REAL-TIME,
DIGITAL SYSTEM ARCHITECTURES FOR INTEGRATED CORE AND MISSION
AVIONICS, VEHICLE ELECTRONIC SYSTEMS, AND WEAPONS MANAGEMENT
SYSTEMS FOR POST-1985 NAVAL AIRCRAFT PLATFORMS. FAULT-TOLERANCE
AND RECONFIGURABILITY CONCEPTS WILL BE INCLUDED TO PROVIDE A HIGH
DEGREE OF AVAILABILITY OF AIRCRAFT FOR BOTH CARRIER AND OTHER
AIR-CAPABLE SHIP APPLICATIONS. STATE-OF-THE-ART, AUTOMATED DECISION
AIDS (ARTIFICAL INTELLIGENCE) TECHNOLOGY WILL BE EMPLOYED TO REDUCE

AIR CREW WORKLOAD.
BUDGET

10C ~ 1987 FY82 FY83 Fys4 FY85 FY86 FY87

1.0 1.8 3.0 26 29 {3.9)

Figure 24

SYSTEM
MISSION

MISSION/SENSORS

WEAPONS

Figure 25

NATO FUTURE IDENTIFICATION SYSTEM (FIS)

P.E. 63267N PROJ NO. W1253AA

PROJ TITLE: NATO FUTURE IDENT. SYSTEM

THIS PROJECT IS ALSO KNOWN AS NATO IDENTIFICATION SYSTEM (NIS) OR
COMBAT IDENTIFICATION SYSTEM (CIS).

THIS PROJECT PROVIDES NAVY FUNDING TECHNICAL SUPPORT TO A
DOD-INITIATED TRI-SERVICE PROGRAM WHICH iS ASSIGNED TO THE AIR

FORCE AS LEAD SERVICE {AERONAUTICAL SYSTEMS DIVISION/XRQI, COL. BOLEN,
WPAFB, 0.).

THE NATO FIS WILL BE A NEW GENERATION NATO-COMPATIBLE IFF SYSTEM
WHICH IS TO REPLACE THE MK X, Xli IFF WHICH IS USED IN CIVIL AND
MILITARY AIRCRAFT AND SHIPS WORLDWIDE. A STANAG, STANDARD NATO
AGREEMENT, 1S BEING STAFFED IN ALL NATO COUNTRIES WITH VARIOUS
TECHNICAL APPROACHES BEING CONSIDERED. EVENTUALLY A “SIGNALS IN
SPACE” STANDARD WILL BE ADOPTED, WITH EACH COUNTRY FREE TO BUILD
ITS OWN EQUIPMENT. AN I0C OF 1990 IS HOPED FOR.

COGNIZANCE
NAVAIR (MR. THYBERG) BUDGET Fy81 82 83 84
NRL (MR. VERONDA) M 0 25 69 BD
Figure 26
GEODETIC/GEOPHYSICAL SATELLITE
(GEOSAT)
PROGRAM ELEMENT NUMBER SUB PROJECT NUMBER
63371N R1452-SB

PROJECT DESCRIPTIONS: THE GEOSAT MISSION 1S TO FLY A DUPLICATE OF THE SEASAT-A RADAR
ALTIMETER IN FY84, THE GEOSAT PruGRAM WILL cCOMMENCE IN FY82 wiThH THE JoHNS HoPKINS
UNIVERSITY/APPLIED PHYSICS LARORATORY DESIGNING AND FABRICATING THE SPACECRAFT. MIssion
OPERATION IS SCHEDULED FOR AN 18-MONTH CONTINUOUS PERIOD, T[HE DATA OBTAINED WILL ALLOW
IMPROVEMENTS IN THE EARTH GRAVITATIONAL MODELS IN SUPPORT OF ADVANCED SLBM sYSTEMS.

COGNIZANT ACTIVITY: FIRST YEAR (FY 82) FUNDING
OFrice oF NAVAL RESEARCH $16,138M
Cope 464
Figure 27

73

74

GRAVITY GRADIENT
BOOM

GEOQS i1l BUS
\ i
1]
1

SOLAR PANELS

v

RADAR
ALTIMETER

GEOSAT

Figure 28

SURFACE SHIP TORPEDO DEFENSE

PROGRAM ELEMENT NO. 63506 PROJECT NO. S0225

THE SSTD PROJECT WILL PROVIDE CAPABILI-
TIES NEEDED TO INCREASE SHIP SURVIVABILITY
IN A TORPEDO THREAT ENVIRONMENT. SUB-
SYSTEMS WILL ADD THE ABILITY TO: DETECT
AND CLASSIFY TORPEDOES, DEPLOY COUNTER-
MEASURES AGAINST ACOUSTIC HOMING TOR-
PEDOES, AND DETECT ACTIVE ACOUSTIC
EMISSIONS. IOC IS PLANNED FOR 1991/ 2. THE
POTENTIAL MARKET FOR AT LEAST PART OF
THE SYSTEM WOULD INCLUDE ALL NAVY AND
COAST GUARD SURFACE SHIPS.

FY 82 FUNDING
NAVAL SEA SYSTEMS COMMAND $2.1M

Figure 29

SSTD SUBSYSTEMS

MECHANICAL TORPEDO CM (MTC)
MECHANICAL SONAR JAMMER (MSJ)
ELECTRONIC TORPEDO CM (ETC)

TRP : EAD
|
TORPEDO | commanp - =
DETECTION | AND
AND b1 DispLay
CLASSIFICATION :
| CM LAUNCHERS
| PORT
_______ 1 — AND CM LOCKER
| STARBOARD
|
ACOUSTIC |
INTERCEPT |
RECEIVER | PORT
l AND
STARBOARD
Figure 30
Shipboard Corrosion Control
Program Element Number - Sub Project Number -

63513N S1417-SL

This Project Will Develop Production Processes to
improve Life Cycle Costs of Ships Components
Through Improved Corrosion and Wear
Characteristics. The Processes Wil Have a
Technology Base in 6.2 Area/Industry R&D.

Cognizant Activity - First Year (FY 82)
NAVSEA O5R15 Funding -$505K

85 86
5K 505 2762 | 2764

Figure 31

75

Program Highlight —
Wire-Sprayed Aluminum

Simulated Steam Valve Evaluations

No Protection

WSA Preserved Valve

Temperature: 975°F . ,
Salt Spray: 5% Solution Sindines 3 &*; »

Exposure: 3 Weeks Aluminum Painted Valve

Figure 32 (Note: 9759F = 5249C),

NAVY FUTURE COMMUNICATIONS SYSTEMS

P. E. 63520N PROJECT X1286-CC

PROJECT DESCRIPTIONS:
-NONSATELLITE RELAY
-LINE OF SIGHT/EXTENDED LINE OF SIGHT AJ COMMS
-DIRECTIVE SHIPBOARD ANTENNA SYSTEM
-NON-HF CHANNEL EVALUATION AND SELECTION SYSTEM
~TASK FORCE/SHIP-SHORE NETWORKS
-AFLOAT/ASHORE MODULAR RADIOS

COGNIZANT ACTIVITY FIRST YEAR (FY82) FUNDING
NAVAL ELECTRONIC SYSTEMS COMMAND (ELEX 310) $2.6M

Figure 33

76

NONSATELLITE RELAY

¢ OBJECTIVE

— PROVIDE EXTENDED LOS COMMUNICATIONS
— ADD TO THE MIX OF MISSION CAPABILITIES
- CONSERVE AIRCRAFT RESOURCES FOR PRIME MISSION

— PROVIDE ELOS UHF COMMUNICATIONS IN A HOSTILE ELECTRONIC
ENVIRONMENT

¢ RATIONALE

— DECREASE TASK FORCE RELIANCE ON HF FOR OTH
— INCREASE COMMUNICATIONS SURVIVABILITY
—~ DECREASE RELIANCE ON FIXED COMMUNICATIONS

//@

Figure 34

LINE OF SIGHT/EXTENDED LINE OF
SIGHT AJ COMIMUNICATIONS

e OBJECTIVE

— PROVIDE NEW LOS/ELOS UHF/VHF AJ CAPABILITY FOR VOICE/DATA
— ACCOMMODATE NTDS

e RATIONALE

— REQUIREMENT TO PROVIDE FOR TASK FORCE LOS/ELOS AJ
COMMUNICATIONS

Figure 35

77

DIRECTIVE SHIPBOARD ANTENNA
SYSTEM

e OBJECTIVE

— PROVIDE FOR STEERABLE ANTENNA WITH FOLLOWING

CHARACTERISTICS FOR AJ/LPI COMMUNICATIONS
SELECTABLE BEAM WIDTH

ROTATABLE ON HORIZONTAL AND VERTICAL AXES
MULTIPLE BAND

e RATIONALE

— PROVIDE FOR TASK FORCE AJ/LPI CAPABILITY
— REDUCE HIGH SHIPBOARD RFI

Figure 36

NON-HF CHANNEL EVALUATION
AND SELECTION SYSTEM

* OBJECTIVE
— EMPLOY CES CONCEPT IN UHF/VHF/SHF BANDS

e RATIONALE

— DESIRE TO REDUCE O&M EXPENSES

— REQUIREMENTS TO PROVIDE FOR
IMPROVED CHANNEL UTILIZATION AND CIRCUIT SELECTION
JAMMING DETECTION

Figure 37

78

TASK FORCE/SHIP-SHORE NETWORKS

& OBJECTIVE

— EMPLOY MULTIPLE ACCESS TECHNIQUES TO INTRA-TASK FORCE AND
SHIP-SHORE COMMUNICATIONS (HF/UHF)

& RATIONALE

~ PROVIDE INCREASED COMMUNICATIONS PERFORMANCE WITH LIMITED
RESOURCES

— DESIRE TO REDUCE O&M EXPENSES ASHORE AND AFLOAT

— OPPORTUNITY TO REDUCE ACQUISITION COSTS

TASK FORCE *
LOS/ELOS /
NETWORK
SHARED
SHIPISHORE
NETWORK
————————

Figure 38

E

AFLOAT/ASHORE NMODULAR
RADIOS

e OBJECTIVE

— DEVELOP A MODULAR FAMILY OF RADIO COMPONENTS TO SATISFY
THE FOLLOWING CHARACTERISTICS
APPLICABLE TO VLF THROUGH EHF BANDS
PROVISION FOR AJ/LPI MODULES
FLEXIBILITY TO ACCOMMODATE NEW TECHNOLOGIES

e RATIONALE

— OBSOLETE RADIO REPLACEMENT

— MATURING VLSI/VHSIC TECHNOLOGIES

— REDUCED O&M EXPENSES

— REQUIREMENTS TO PROVIDE FOR
INTRA-TASK FORCE/LONG-HAUL AJ/LPI CAPABILITIES
EQUIPMENT FLEXIBILITY

Figure 39

79

ENHANCED MODULAR SIGNAL PROCESSOR

PE 63524N PROJECT S1440-AS

* NEXT GENERATION NAVY STANDARD SIGNAL PROCESSOR
* ORDER OF MAGNITUDE IMPROVEMENT OVER AN/UYS-1

* DEVELOPED AS AN [INTEGRAL MEMBER OF NAVY STANDARD
TACTICAL EMBEDDED COMPUTER FAMILY

* INITIAL DEVELOPMENT UNDER THE SUBMARINE ADVANCED COMBAT
SYSTEM PROGRAM (SUBACS)

PMS 408 $14,400K (FY 82)

Figure 40

FFX DESIGN
PE 63564 PROJECT S 1357

FFX CONTRACT DESIGN PHASE - THE PRODUCT OF THIS
EFFORT IS AN ENGINEERING DATA PACKAGE. MAY ALSO INCLUDE
ENGINEERING DEVELOPMENT FOR COMBAT SYSTEM,
SUBSYSTEM INTEGRATION, COMPUTER PROGRAM
DEVELOPMENT AND TEST/EVALUATION SUPPORT.

SEA 03R $4,041M(FY 82)

Figure 41

80

ELECTRIC DRIVE

PROGRAM ELEMENT 63573N SUB PROJECT S$1314-SL

DEVELOPMENT AND OPERATIONAL EVALUATION OF A FULL-
SCALE 40,000 HORSEPOWER-PER-SHAFT ADVANCED
ELECTRIC DRIVE SYSTEM FOR SHIPS. SYSTEM WILL
CONSIST OF TWO 20,000-HP GENERATORS AND ONE 40,000-
HP MOTOR PLUS ALL ANCILLARY SYSTEMS AND CONTROLS
FOR OPERATIONAL EVALUATION AT A LAND-BASED TEST
SITE. RECENT ADVANCES IN TECHNOLOGY PROGRAM FOR
ADVANCED LIGHTWEIGHT, COMPACT AND

EFFICIENT ELECTRIC MACHINERY PROVIDE THE
OPPORTUNITY FOR MAJOR REDUCTIONS IN SHIP SIZE AND
COSTS THRU THE ARRANGEMENT AND

OPERATIONAL FLEXIBILITY OF ELECTRIC DRIVES.

COGNIZANT ACTIVITY FIRST YEAR (FY 82) FUNDING
NAVAL SEA SYSTEMS $0.6M
COMMAND

Figure 42 (Note: 1 hp = 746 W).

ADVANCED ELECTRIC DRIVE

COMPARATIVE SIZE AND WEIGHT
OF PROPULSION MOTORS
30,000 KW @ 180 RPM

CONVENTIONAL
AIR-COOLED

MOTOR ADVANCED ELECTRIC
MOTOR
146,000 KG 36,000 KG
6 M DIAMETER 2 M DIAMETER

Figure 43

81

82

LIGHTWEIGHT SONAR

PROGRAM ELEMENT NO. 63589 PROJECT NO. S1451

AN/SQS-53 IMPROVEMENT PROGRAM PHASE IL.
THIS IS THE MODERNIZATION AND UPGRADE
OF THE TRANSMIT AND RECEIVE SUBSYSTEMS.
THE ESTIMATED R&D COST IS $130M. IOC IS
PLANNED FOR 1989 CONCURRENT WITH DDG-X.
THE TOTAL MARKET, INCLUDING BACKFIT, IS
120 SYSTEMS AT AN AVERAGE UNIT COST OF
$13M (FY 80 $).

NAVAL SEA SYSTEMS COMMAND FY 82 FUNDING
$40.3M

Figure 44

AN/SQS-53 ‘C’

{ S0S53 IMPROVEMENT PROGRAM, (LI EQUIPMENT CONFIGURATION)

TRANSMITTER SUBSYSTEM POWER DISTRIBUTION

. l . l l TROL

i RECEIVE - CONTROL H DISPLAY

ARRAY SUBSYETEM ' SUBSYSTEM SUBSYSTEM E SUBSYSTEM
’ '
USM-268 L]
1
[]
[}
' o
]

'lii

Figure 45

PE 63730

MEWSS WILL FULFILL THE REQUIREMENT TO PROVIDE AMPHIBIOUS
ASSAULT AND RAPID DEPLOYMENT MECHANIZED FORCES THE CAPABILITY OF

MOBILE ELECTRONIC WARFARE SUPPORT SYSTEM (MEWSS)

C0937

DETECTING, LOCATING, AND DEGRADING ENEMY TACTICAL AM AND FM RADIO

COMMUNICATIONS IN THE HF, VHF, AND UHF FREQUENCY SPECTRUM.
CAPABILITY WILL BE INSTALLED IN AN AMPHIBIOUS ASSAULT VEHICLE,
WILL BE COMPATIBLE WITH THE HIGH MOBILITY MULTIPURPOSE WHEELED

VEHICLE (HMMWV).

NAVELEXSYSCOM 837K

Figure 46

ALL_SOUR AGERY PROCESSOR (ASIP)

THe ASIP 1S BEING DEVELOPED AS A REPLACEMENT

For THE MAGIS AIR GROUND INTELLIGENCE SYSTEM (MAGIS)

Il SEGMENT AND WILL BE CAPABLE OF PROCESSING/

EXPLOITING MULTI-SOURCE IMAGERY AND SELECTED HARD

COPY PRODUCTS.,

~J
(22
(o]
<

DevCyr MCDEC

Figure 47

AND

83

GHT TLEFTELD SURVEILLANCE DEVICE

P.E. 63730M C1421

THE LBSD IS AN X-BAND, MOVING TARGET INDICATOR, COHERENT DETECTION
SURVEILLANCE RADAR SYSTEM, BASED ON A SERIES FERRITE FED
ELECTRONIC SCAN ANTENNA, AN IMPATT TRANSMITTER, AND A PROGRAMMABLE
SURFACE ACOUSTIC WAVE CORRELATOR/SIGNAL PROCESSOR, THE SYSTEM
INHERENTLY POSSESSES MANY NEW CAPABILITIES FOR DAY/NIGHT, ALL-
WEATHER TARGET ACQUISITION,

NOSC - San DiEco NONE

Figure 48

LIGHTWEIGHT SETSMIC/ACQUSTIC PASSIVE
BATTLEFIELD SURVEILLANCE DEVICE (LSAPD)

PE 63730M C1422

THE LSAPD IS A LIGHTWEIGHT, LOW COST, PASSIVE SURVEILLANCE
SYSTEM REQUIRED TO DETECT AND LOCATE TARGETS OUT TO RANGES OF l10kM,
THE DESIGN GOAL IS FOR A 34-kG, 2-10KkM, MULTI-SENSOR, SEISMIC/ACOUSTIC,
MAN TRANSPORTABLE FRONT LINE PASSIVE SURVEILLANCE CAPABILITY,

NAVAL OCEANS SYSTEMS CENTER NONE
SAN DIEGO, CALIFORNIA TRANSITIONS TO
6.3 IN
Fy84

Figure 49

OSD/OMB SUBMISSION

OCTOBER FYDP 18 SEP 80
6.4 PROGRAMS

PROGRAM TOTAL

(BUDGET MINIMUM)

$ 1,622.206M

a—

e ————

I
|

PROGRAM ELEMENTS 98

NEW P.E.s 9

PROJECTS 284

NEW PROJECTS (FY 82) 28
Figure 50

P.E.

6u213N
64219N
64219N
64226N
6u4226N
6U307N
64307N
6U314N
64352N
64353N
64370N
64505N
64514N
64524N
64562N
64567N
646464

FY 82 NEW STARTS - PROJECTS (6.4)

PROJECT TITLE
W1502-SL H-46 GPW SYSTEM
$1396-AS ACOUSTIC PERFORMANCE PRED
W1442-AS SH 2 RELIAB READINESS INSP
W1481-TW ASPJ SUPT EQUIP
W1482-TH ASPJ A/C INTEGRATION
S1275-AA AEGIS PRODUCT IMP
S1447-AA COMBAT SYS IMP
W0981-AA AMRAAM
S0279-AA MK 92 FCS UPGRADE
$1504-AA VLS ASROC
S1500-AA SSN-688 CLASS VLS
X1411-CC SSNICS
$1445-CC DUAL MINI SINS IMP
S1347-AS SUB ADV COMBAT SYS
S0366-AS TORPEDO EMG DEV
$1357-SL FFX
C1293-AW ROTARY ENGINE

Figure 51

85

P.E.

6465/M
64657M
64709N
64715N
64715N
64725N
bu725N
64725N
64725N
64725N
64719N

PROJECT

C1294-AW
C1443-AW
Z1496-PN
£1426-PN
£1428-PN
£1433-PN
21434-PN
21435-PN
£1436-PN
£1454-PN
C0053-CC

TITLE

FARS

TRNG DEV/SIMULATORS (ENG)
TRI-SERVICE MNPR MGT

MOB ELECTR W/F SIM
AN/SQQ-23/BQR-20A OPTRNR
DYNAMIC SUB SYS SIM
SHIPBOARD C/S TEAM TRNR
SHIP HANDLING TRNR

SURF WARFARE TNG ANAL
DIGITAL RADAR TARGET SIM
JTIDS

Figure 51.- Concluded.

VERTICAL LAUNCH ASROC

PE: 64353

SUB PROJ: S1504-AA

e MODIFY ASROC MISSILE FOR VERTICAL LAUNCH
CAPABILITY

e MODIFY VLS TO INCORPORATE ASROC

COGNIZANT ACTIVITY

NAVSEA (PMS 410) — VLS

FY 82 FUNDING
$153 M

NAVSEA (63Y) — MISSILE SYSTEM

86

Figure 52

CURRENT VLS DEVELOPMENT PROGRAM

VERTICAL LAUNCHING

SYSTEM m
- <oy
3 i
O S STANDARD
|
(]
5
A
A ASROC
f;
{HARPOON)
DDGX TOMAHAWK
Figure 53
_PROJECT TITLE: . SUBMARINE ADYANCED COMBAT SYSTEM
PROGRAM ELEMENT NUMBER: 63524N, 64524N SUB PROJECT NUMBER: S-1346-AS, S-1347-AS

PROJECT DESCRIPTIONS:
e PROVIDE HIGHLY CAPABLE, INTEGRATED COMBAT SYSTEM FOR FUTURE SSN AND SSBN SUBMARINES

e COORDINATE ALL COMBAT SYSTEM AND SUBSYSTEM DEVELOPMENT EFFORTS T0 OPTIMIZE SYSTEM LEVEL
PERFORMANCE IN ALL WARFARE AREAS

o PROVIDE NEEDED OPERABILITY, RELIABILITY, AND MAINTAINABILITY IMPROVEMENTS
o REDUCED VOLUME AND LIFE CYCLE COSTS

o PROVIDE FOR EQUIPMENT AND SUBSYSTEM GROWTH POTENTIAL TO ACCOMMODATE TECHNOLOGY IMPROVEMENTS

COGNIZANT ACTIVITY: FIRS FY 82) FUNDING $
NAVSEA PMS-409 . ___ 8l £Y82

FY85 - SHIP START | 6,3 12.0 (FYDP) 6.3 26.9 (FYDP)

6.4 30.7 (FYDP)

FY86 - SHIP START | 6.3 12.0 (FYDP) 6.3 26.9 (FYDP)

6.4 30.7 (FYDP)

Figure 54

88

MISSIONS,
THREATS

HARPOON
+MK 48 ADCAP
«ASW SOW
*TLAM/TASM
+NP/CSD

SADS/MIDAS

b COMBAT
CONTROL

SUBACS PHASE | SUBSYSTEMS

-\

*TLTA

sWAA
*TAP

»ICS
#SIAS
*CONSOLIDATED CRYPTO

I | s s

AN/WLR-S

>

EXTERIOR
COMMUNICATIONS

IDFS

—>

AN/BSQ-3

»NAVSTAR GPS
*AN/BPS-XX
AN/WSN-3

TYPES 2,8, 15 & 18

PHASE 11

ELECTRONIC EXPANDABILITY

WARFARE

NAVIGATION

—

DARK EYES
#TYPES 20 & 21

r L‘_’L"IJ_':

PERISCOPES

*0ON-GOING R&D
PROGRAMS

PE
63733
63733
63733
63733
63733
64715
64715
64716
64715
64715
64715
64715

Figure 55

NAVAL TRAINING EQUIPMENT CENTER

PROJECT
w1208
w1209
w1389
W1390
W1391
21426
21428
21433
21434
21435
21436
21454

TME
COMP GEN IMAGERY FOR SIM
DYNAMIC SCENE VIS DISPLAY
VTOL *VTRS LASER DISPLAY
MULTI-SPECTRAL IMAGE SYS
HELMET MOUNTED DISPLAY
MOB ELECTR W/F SIM
AN/SQQ-23/BQR-20A OPTRNR
DYNAMIC SUBSYS SIM
SHIPBOARD C/S TEAM TRNR
SHIP HAND TRNR

SURFACE WARFARE TRNG ANAL

DIGITAL RADAR TARGET SIM

*VIRS - VISUAL TECHNOLOGY RESEARCH SIMULATOR

Figure 56

COMPUTER GENERATED IMAGERY (CGl)
FOR SIMULATION

PROGRAM ELEMENT: 63733N PROJECT NO: W1208-PN

DESCRIPTION

DEVELOP A CGI SYSTEM AND DATA BASE CAPABILITY
UTILIZING ADVANCED TECHNOLOGY. PROVIDE
ENHANCED SCENE DETAIL, VISUAL TEXTURE, AND
MACHINE-INDEPENDENT DESCRIPTION OF THE
VISUAL SCENE.

FY82 FUNDING:
COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.505M

Figure 57

COMPUTER GENERATED
IMAGERY FOR SIMULATION

TODAY’S TECHNOLOGY TOMORROW’S GOALS

Figure 58

89

90

DYNAMIC SCENE VISUAL DISPLAY

PROGRAM ELEMENT: 63733N PROJECT NO: W1209-PN

DESCRIPTION

PROVIDE A DYNAMIC VISUAL DISPLAY THROUGH
COMPUTER GENERATED IMAGERY OF SHIPS
INTERACTING WITH WAVES, WEAPONS EFFECTS
INCLUDING DAMAGE, AND OTHER EFFECTS SUCH AS
SMOKE, MOVING SHADOWS, AND ILLUMINATION.

FY82 FUNDING:
COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.504

Figure 59

APPLICATION OF DYNAMIC SCENE
VISUAL DISPLAY TO SHIPHANDLING
TRAINING

Figure 60

VERTICAL TAKE-OFF AND LANDING
VISUAL TECHNOLOGY
RESEARCH SIMULATOR
LASER DISPLAY

PROGRAM ELEMENT: 63733N PROJECT NO: W1389-PN

DESCRIPTION

DEVELOP AN ADVANCED VISUAL DISPLAY SYSTEM
FOR THE VTOL VTRS TO PROVIDE HIGH DETAIL LOW
LEVEL VISUAL CUES CRITICAL TO VTOL OPERATIONS
UTILIZING HIGH RESOLUTION SCANNING LASER
DISPLAYS.

FY82 FUNDING:
COGNIZANTACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.403 (M)

Pigure 61

APPLICATION OF VTOL VTRS LASER
DISPLAY TO TERRAIN FLYING AND
WEAPONS DELIVERY TRAINING

LOW LEVEL

P EMES K

ﬁ 0 V4 '_ " A 2 L IPTR
S USRI (1NN &}:‘ A u‘.n’j—}.\‘ﬂr’ﬂ__

. o 7 87 e f 2 q

R 47
o 1L L . \
A L A

7“’.“1‘1 bk
=&

Vi NS
A\
\

4
\
,k“h.. O

TV R
n@%ﬂﬁgﬁ‘i“

N ¥ m i
gos Ny "_4};3‘3!"2""7?-'-- e :‘. o

CONTOUR

Wy N

" NAP OF EARTH

Figure 62

91

92

MULTI-SPECTRAL
IMAGE (MSI) SIMULATION

PROGRAM ELEMENT: 63733N PROJECT NO: W1390-PN

DESCRIPTION

DEVELOP AN MSI SIMULATION FOR LOW LEVEL
FLIGHT INCORPORATING FLIR, LLLTV, LASERS, AND
RADAR. FEASIBILITY MODEL WILL DEMONSTRATE
MISSION ORIENTED CORRELATION OF SENSORS.

FY82 FUNDING:
COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.713 (M)

Figure 63

MULTI-SPECTRAL IMAGE SIMULATION

ACTIVE PASSIVE
SENSORS SENSORS
l-'r';--;'.;_

b 2 ‘/

'

o) \\w\m\\\\\\\\um\\\u

Figure 64

HELMET MOUNTED DISPLAY

PROGRAM ELEMENT: 63733N PROJECT NO: W1391-PN

DESCRIPTION

DEVELOP A WIDE FIELD OF VIEW, HIGH RESOLUTION
VISUAL SIMULATION SYSTEM UTILIZING A HEAD/EYE
AIMED PILOT HELMET MOUNTED LASER PROJECTOR.

FY82 FUNDING:

COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $2.336(M)

Figure 65

PILOT HELMET MOUNTED DISPLAY

0

UMBILICAL

Figure 66
93

94

MOBILE ELECTRONIC
WARFARE SIMULATOR

PROGRAM ELEMENT: 64715N PROJECT NO: Z1426-PN

DESCRIPTION

PROVIDES MANIPULATIVE SKILL TRAINING FOR
ELECTRONIC WARFARE OPERATORS BY GENERATING
AND TRANSMITTING ELECTROMAGNETIC SIGNALS
FROM A MOBILE PLATFORM DIRECTLY TO THE

ONBOARD SENSOR SYSTEM.
FY82 FUNDING:

COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.8M
OPN: $2.3M
Figure 67

MOBILE ELECTRONIC
WARFARE SIMULATOR

SIMULATED RADAR

SIGNALS

|
! POWER SUPPLY

Q oo SIGNAL GENERATORS
@ Q INSTRUCTOR OPERATOR
Q CONSOLES

REPAIR CENTER

0;

Figure 68

SQQ-23/BQR-20A
OPERATOR/TEAM TRAINER

PROGRAM ELEMENT: 64715N PROJECT NO: Z1428-PN

DESCRIPTION

PROVIDES AN OPERATOR/TEAM TRAINER THAT WILL
ACCOMMODATE THE TRAINING OF PERSONNEL
DESTINED TO OPERATE THE AN/SQQ-23 SONAR
INTERFACED WITH THE AN/BQR-20A SONAR. THIS
SYSTEM WILL MODIFY THE CURRENT DEVICE 14E24
AND ADD/INTERFACE THE BQR-20A TRAINING.

FY82 FUNDING:
COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $1.9M

Figure 69

SQQ-23/BQR-20A
OPERATOR/TEAM TRAINER

DEVICE 14E24

AN/BQR-20A SONAR

Figure 70

95

96

DYNAMIC SUBSYSTEM SIMULATION

PROGRAM ELEMENT: 64715N PROJECT NO: Z1433-PN

DESCRIPTION

PROVIDES FGG-7 COMBAT SYSTEM SOFTWARE
SIMULATION FOR MAINTENANCE TRAINING TO BE
INCORPORATED INTO THE CURRENT COMBAT
SYSTEM MAINTENANCE TRAINING FACILITY AT MARE

ISLAND. FY82 FUNDING:
COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $2.0M

Figure 71

DYNAMIC SUBSYSTEM SIMULATION

SPECIFIC MAINTENANCE
TRAINING
for
FFG-7 CLASS
COMBAT SYSTEM

SOFTWARE

COMBAT SYSTEM
MAINTENANCE TRAINING
FACILITY
VALLEJO, CA

Figure 72

SHIPBOARD “ORGANIC?”
COMBAT SYSTEM TEAM TRAINER

PROGRAM ELEMENT: 64715N PROJECT NO: Z1434-PN

DESCRIPTION

DEVELOP EMBEDDED “ORGANIC” TRAINING
SYSTEMS TO SUPPORT OPERATIONAL COMBAT
SYSTEM TRAINING IN SURFACE COMBATANTS - THIS
SYSTEM WILL PROVIDE INDEPENDENT COMBAT
SYSTEM TRAINING AT SEA AND AT PIERSIDE.

FY82 FUNDING:

COGNIZANT ACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.3M

Figure 73

“ORGANIC”
COMBAT SYSTEM TEAM TRAINER

EMBEDDED
TRAINING
SOFTWARE

T I,
(e

A Q!‘,"',r" N

O\ 5l
©

P
o

I\-

FIRE CONTROL/COMBAT
SYSTEM COMPUTERS
INDICATORS

Figure 74

97

SHIPHANDLING TRAINING SYSTEM

PROGRAM ELEMENT: 64715N PROJECT NO: Z1435-PN

DESCRIPTION

DEVELOP A PART TASK AND ADVANCED
SHIPHANDLING TRAINING SUITE TO PROVIDE
REALISTIC TRAINING IN THE TWELVE FUNDAMENTAL
KNOWLEDGE AND SKILL AREAS REQUIRED FOR
PILOTING AND CONNING A SHIP.

FY82 FUNDING:
COGNIZANTACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.2M

Figure 75

SHIP HANDLING SIMULATOR

CONNING PILOTING

il

", /xx_
*%//t@)\\\

Figure 76

SURFACE WARFARE
TRAINING ANALYSIS

PROGRAM ELEMENT: 64715N PROJECT NO: Z1436-PN

DESCRIPTION

PROVIDE FOR IN-DEPTH FRONT-END ANALYSIS OF
SPECIFIC SURFACE WARFARE TRAINING PROBLEMS
TO INCLUDE DEFININTION OF REQUIREMENTS/
SHORTFALLS, TRAINING OBJECTIVES AND STUDENT
LOADING.

FY82 FUNDING:
COGNIZANTACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.2M

Figure 77

SURFACE WARFARE
TRAINING ANALYSIS

“FRONT-END” ANALYSIS

COST EFFECTIVE?
TRAINING EFFECTIVE?
GOLDPLATING?

DECISION MAKING

Figure 78

100

DIGITAL RADAR TARGET GENERATOR

PROJECT ELEMENT: 64715N PROJECT NO: Z1454-PN

DESCRIPTION

PROVIDES BASIC AIC/ASAC QUALIFICATION AND
TRAINING TO PERMIT THE TRAINEE TO LEARN AND
PRACTICE CONTROL OF VARIOUS SIMULATED
OPERATIONAL AIRCRAFT. THIS DEVICE WILL
SIMULATE RADAR AND IFF/SIF EQUIPMENT.

FY82 FUNDING:
COGNIZANTACTIVITY: NAVTRAEQUIPCEN RDT & E: $0.4M

Figure 79

DIGITAL RADAR TARGET SIMULATOR

B

GENERATES UP TO
20 TARGETS SURFACE
AND AIR FOR CIC
AND AIC/ASAC
TRAINING. 1

SIMULATION SUITE

Figure 80

PERSONNEL RESEARCH AND DEVELOPMENT CENTER

P.E. PROJECT TITLE

63707 21383 CIV PERS ISSUES

63707 21385 COMPUTERIZED ADAPTIVE TEST
63710 21392 PERFORMANCE ENHANCEMENT
63720 21382 FUNCTIONAL CONTEXT TRNG
63720 21388 LOW COST MICRO COMP SYS
64709 21496 TRI SERVICE MNPWR MGMT

Figure 81

CIVILIAN PERSONNEL ISSUES

PROGRAM ELEMENT NUMBER: PROJECT NUMBER:
63707N Z1383-PN

e DEVELOP NEW PERFORMANCE EVALUATION SYSTEM
e IDENTIFY TASKS
e MEASURE WORK OUTPUT
e ESTABLISH PERFORMANCE STANDARDS

e CONDUCT SUPERVISORY TASK TRAINING

NPRDC FY 82: $301K

Figure 82

101

COMPUTERIZED ADAPTIVE TESTING
(CAT)

PROGRAM ELEMENT NUMBER: PROJECT NUMBER:
63707N Z1385-PN

e COMPUTERIZED MILITARY SELECTION/CLASSIFICATION
TESTING

e REDUCED TESTING TIME

e BETTER TEST ACCURACY

e REDUCED CHANCE OF COMPROMISE/THEFT
e AUTOMATED SCORING

NPRDC FY 82: $301K

Figure 83

FUNCTIONAL CONTEXT TRAINING

PROGRAM ELEMENT NUMBER: PROJECT NUMBER:
63720N Z1382-PN

® IDENTIFY JOB TASKS RELEVANT TO SELECTED RATINGS
® ALLOCATE JOB TASKS TO SPECIFIC COURSES
e STRUCTURE TRAINING TO PROVIDE:

¢ INITIAL ORIENTATION

e TRAINING OF JOB TASKS

e WHOLE-TO-PART SEQUENCING OF TASKS

NPRDC FY 82: $100K

Figure 84

102

PERFORMANCE ENHANCEMENT

PROGRAM ELEMENT NUMBER: PROJECT NUMBER:
63710N Z1392-PN

e IMPROVE PERSONNEL PERFORMANCE IN SHIPBOARD
SYSTEMS

e CURRENTLY EVALUATING SIMULATED ANTI-AIR
DETECTION AND TRACKING TO:

e IDENTIFY PROBLEMS
® PROPOSE AND IMPLEMENT SOLUTIONS

® CONDUCT FOLLOW-ON R&D ON ADDITIONAL
SHIPBOARD SYSTEMS

NPRDC FY 82: $803K

Figure 85

LOW-COST MICROCOMPUTER SYSTEMS
FOR TRAINING

PROGRAM ELEMENT NUMBER: PROJECT NUMBER:
63720N Z1388-PN

® EVALUATE PROTOTYPE MICROCOMPUTER SYSTEMS
FOR TRAINING AS TO:

e EFFICIENCY IN TEACHING DIVERSE SKILLS
e COST EFFECTIVENESS

NPRDC FY 82: $200K

Figure 86

103

104

TRi-SERVICE
MANPOWER MANAGEMENT PROGRAM

PROGRAM ELEMENT NUMBER:

64709-PN

PROJECT NUMBER:
Z1496-PN

® FUNDING FOR CRITICAL JOINT SERVICE RESEARCH IN:

e MANPOWER
e PERSONNEL
e TRAINING

® MULTI-SERVICE PAYOFF REQUIREMENT

OP-966D

63207N
63216N
63217N
63217N
63262N
63267N
63308N
63313N
63369N
63710N
63733N
63733N
63733N
63733N
637330
63785N
63785N
64213N
B4219N
642268
64226N
64314N

FY 82 NEW STARTS

H1399
W1401
K0885
#0892
W0592
W1253
WoLu40
0302
W1446
W1230
W1208
w1209
W1389
W1390
W1391
WO646
H0659
W1502
W1lu42
W1481
W1482
W0981

Figure 87

NAVAIR

Figure 88

FY 82: $4,800K

NOSS

HELO AIRCREW SURVEILLANCE
MOD AVIONICS PACKAGE

INFO HAND SYSTEMS

A/C & ORDNANCE SAFETY
NATO FUTURE IDENT SYSTEM
RAMJET MISSILE TECH

IR ATTACK WEAPON

MRASM (1IR)

DESIGN FOR MAINTAIN

COMP GEN IMAGERY FOR SIM
DYNAMIC SCENE VIS DISPLAY
VTOL VTRS LASER DISPLAY
MULTI-SPECTRAL IMAGE SYS
HELMET MOUNTED DISPLAY

ABN ELECTRO/OPTICAL C/M
E/0 GUIDED WPNS C/M TEST
H-46 GPW SYSTEM

SH-2 RELIA READINESS INSP
ASPJ SUPT EQUIPMENT

ASPJ A/C INTEGRATION
AMRAAM

63520N

63763N

63784N

64505N

63710N

63506N
63523N
63524N
63533N
63534N
63536N
63564N
63573N
63583N
63589N
63589N
63589N
64219N
64307N
64307N
64352N
64353N
64370N

64514N
64524N
64562N
64567N

S0225
$1332
S1440
$1417
50308
S0854
$1357
S1314
S1448
S1449
S1450
S1451
$1396
$1275
S1447
50279
S1504
$1500

S1445
§1347
S0366
S1357

FY 82 NEW STARTS

NAVSEA

Figure 89

SURF SHIP TORPEDO DEF
SWATH

EMSP

SHPBD CORROSION CONTROL
SES

S0JS

FFX

ELECTRIC DRIVE

NON-AEGIS RADAR DEV
LIGHTHEIGHT AEGIS

COMBAT SYSTEM INTEGRATION
LIGHTWEIGHT ~SONAR

ACOUSTIC PERFORMANCE PRED
AEGIS PRODUCT IMPROVEMENT
COMBAT SYS IMPROVEMENT
MK 92 FCS UPGRADE

VLS ASROC

SSN CLASS VLS

DUAL MINI SINS IMP

SUB ADV COMBAT SYSTEM
TORPEDG ENG DEV

FFX

FY 82 NEW STARTS

X1268

X1319

X0756

X1411

71393

NAVELEX

NAVSUP

Figure 90

NAVY FUTURE COMM

TACT SURVEILLANCE

SYSTEM

SYSTEM

LTWT UNDERSEA SENS COMP

SSN ICS

MICROFILM TECH FOR RECORDS

105

106

63635N
63730N
63730N
63730N
63730N
63730N
63731N
bL6LEN
64657N
64657N

63707N
63707N
63710N
63710N
63720N
63720N
64709N
64715N
64715N
647 15N
647 15N
647 15N
64715N
64715N

C1295
C0066
€093/
C1296
C1421
C1422
Cooo4
C1293
C1294
C1443

£1383
£1385
£1170
£1392
£1382
£1388
£1496
£1426
£1428
£1433
21434
£1435
£1436
21454

FY 82 NEW STARTS
MARINE CORPS

Figure 91

ARTY DIFIS

NON COMM ECM SYS

MOBILE EW SUPP SYS

ALL SOURCE IMAGE PROC

LTWT BATTLEFIELD SURV RADAR
LTWT SEIS/ACOUS PASS DEV
MAR INTEG PERS SYS

ROTARY ENGINE

FARS

TRNG DEV/SIMULATORS (ENG)

FY 82 NEW STARTS

CND

Figure 92

CIV PERS ISSUES
COMPUTERIZED ADAPTIVE TEST
HUM PROC AUTO DATA BASE
PERFORMANCE ~ ENHANCEMENT
FUNCTIONAL CONTEXT TRAINING
LOW COST MICRO COMP SYSTEM
TRI SERVICE MANPOWER MGMT
MOB ELEC W/F SIM
AN/SQQ-23/BAR-20A OPTRNR
DYNAMIC SUB SYS SIM
SHIPBOARD C/S TEAM TRNR
SHIP HANDLING TRNR

SURF WARFARE TRNG ANAL

DIG RADAR TARGET SIM

63371N

63710N

63785N

63785N

FY 82 NEW STARTS

R1452

R0O126

R0O119

RO120

ONR
GEO SAT
OPERATIONAL DECISION AIDS
SURVEIL ENVIRON ACOUS SPT
TAC ASW ENVIRON ACOUS
SPT
Figure 93

107

SOFTWARE ERROR DETECTION

Wolfgang Buechler and A. Gilliam Tucker
Comptek Research, Inc.
Santa Barbara, California

ABSTRACT

Effective software debugging requires capturing sufficient information when an error
occurs to detect the primary source of error. This is particularly true with complex realtime
systems where errors occur at unpredictable times and are difficult to recreate.

As part of the AN/SLQ-32 operational software, a large embedded real time system for the
ROLM 1606, several methods were employed to detect both the occurrence and source of errors.
The ROLM computer provides information about invalid memory addressing, improper use of
privileged instructions, stack overflows, and unimplemented instructions. Additionally, software
techniques were developed to detect invalid jumps, indices out of range, infinite loops, stack
underflows, and field size errors. Finally, data is saved to provide information about the status of
the system when an error is detected. This information includes 1/O buffers, interrupt counts,
stack contents, and recently passed locations.

These error detection techniques were a major factor in the success of finding the primary
cause of error in 98% of over 500 system dumps.

109

INTRODUCTION

Effective software debugging requires capturing sufficient information
when an error occurs to detect the source of error. This is particularly
true with complex real time systems where errors occur at unpredictable
times and are difficult to reproduce. Indications that an error has
occurred at some previous moment are not adequate since determination of the
original failure may often be impossible. To be effective, software error
detection logic must detect and expose the primary error condition as soon
as possible to maximize the availability of useful diagnostic information.

As part of the AN/SLQ-32 operational software, a large embedded real
time system for the ROLM 1606, several methods are employed to detect both
the occurrence and source of errors. These techniques include error-related
events and information made available by the ROLM computer itself as well
as error detection and diagnostic logic installed in the software package.

The AN/SLQ-32 real time electronic warfare command and control system
is capable of detecting multiple radar signals at very high data rates. The
central computer is a ROLM 1606 with memory configurations ranging from 64K
to 112K words. Access to the memory in excess of 64K is accomplished through
dynamic memory map switching evoked by a special purpose executive module.
The entire operational software is written in assembly language and structured
into a multi-task/multi-user configuration. Inter-task communication and
coordination are accomplished via system calls to the executive module. Integral
to this executive module structure is the implementation of error detection
techniques to exploit the ROLM error processing and effect additional software
processing. Several errors are recognized and corrective action is attempted
on-line. However, the majority of errors are considered fatal and the system
halts in an orderly error shutdown mechanism. The various errors detected
include:

unimplemented instructions
stack overflows

memory address violations
jumps to an invalid location
stack underflows

task using excessive time
array index out of bounds
data wrong size for field
invalid executive request
unscheduled return

unknown interrupts
privileged instructions

UNIMPLEMENTED INSTRUCTIONS

The unimplemented instruction trap occurs when the ROLM 1606 CPU
encounters a bit pattern which does not decode into a recognizable instruction.
This trap accounts for less than one percent of all system -halts. It is
typically caused by executing data rather than program, memory failure, or
power supply instability. If initialized properly the ROLM 1606 automatically
traps to error routines provided by the operating system.

STACK OVERFLOWS

A stack overflow trap occurs when more data is pushed onto a ROLM 1606
supported stack than the stack can hold. This error accounts for less than
one percent of all system halts. It is typically caused by a subroutine's
calling itself, re-entrance problems, or interrupt masking problems. The
stack overflow trap is similar to the unimplemented instruction mechanism.

MEMORY ADDRESS VIOLATIONS

When a software program attempts to access a memory location which is
designated invalid to access in the ROLM 1606 map descriptor table a memory
address violation occurs. This trap accounts for approximately 19 percent
of all system halts. Typical causes of this violation are undefined variables,
improper “indexing of stack items, or bad table indices.

Diagnosis of these problems is made easier by the ROLM 1606 last address
file (LAF) which contains the following four values:

1) Location of last instruction

2) Location of next-to-last instruction
3) Address of last data fetch/store

4) Address of last DMA fetch/store

At the time of the memory address violation the LAF is frozen and the addressing
information is available to the executive error processing. The original
software error can then be deduced from the program information which is
generally intact.

JUMP TO AN INVALID LOCATION

A jump to an invalid location occurs when the CPU is directed to change
the program counter to a location not within the normal program flow. Partic-
ularly common and also difficult to diagnose is a jump to location zero.
Failures of this class account for approximately '9 percent of the system halts.
Typical software errors causing this type of failure include instruction over-
write, improper index of stack, or improper handling of return linkages. The
AN/SLQ-32 operational software was modified to include an instruction at location

1m

112

zero and several unused locations to cause a memory address violation when
executed. This freezes the last address file before the next-to-last in-
struction fetch is modified. This address indicates the offending jump

quickly and reliably.
STACK UNDERFLOWS

A stack underflow is the attempt to pop more data off a stack than is
currently contained on that stack. Sometimes incorrect data is read while
at other times a random variable would be used as a program counter as with
RTRN or PRT instructions. Less than 1 percent of the systems halts are stack
underflows. Typical underlying software errors include poor stack access,
jumping into the middle of routines, or incorrect return from routines. To
detect the incorrect use of a PC due to a stack underflow as soon as possible,
the area after the stack is padded with the address of an executive stack
underflow detection routine. When this address is popped off as the PC the
error routine takes control and allows the programmer to examine the software

state at the time of the error.

TASK USING EXCESSIVE TIME

The AN/SLQ-32 operational software is a non-pre-emptive task structure.
Specifically, the executive allows each task to retain control of the CPU
(excepting interrupts) until completion of the task's function. Nominally, the
maximum design task time is approximately 100-200 msec. If the task retains
control for a significantly longer time than the nominal, the executive declares
that the task is using excessive time. This failure type accounts for approximately
15% of all halts. Typical causes of this failure are infinite loops, searching
infinite 1inked 1lists, and constantly interrupting hardware. The executive
monitors for this error by keeping a time within task counter driven_by the
one msec real-time clock interrupt. Capturing this event does not guarantee
the retention of more software data specifically, but it does allow for an
orderly, recognizable software shutdown.

ARRAY INDEX OUT OF BOUNDS

In any file structure an accessing program may attempt to fetch data from
beyond the end of a table. Typically, this may be caused by tables which are
too small, unexpected external conditions, or improper passing of table indices.
These failures account for a surprising 36% of all SLQ-32 system halts. Without
earlier detection the original reason for the failure would be greatly masked
and nearly impossible to diagnose. The SLQ-32 software has been augmented to
use common data handlers for most array references. These handlers which are
generated by macro code incorporate 1limit checking code for the array index
and trap to the executive error handling for notification to the programmer.

DATA WRONG SIZE FOR FIELD

When a software program stores values into a data base there is a chance that
the field size allocated to the data field may be smaller or Targer than the data.
This error may be caused by bad links in Tinked lists, programs which do not

check for bad values, and generated data values which exceed design
expectations. Such errors account for approximately 15% of the system halts.
As-with array indices out .of bounds it is essential that the error be trapped
immediately before significant changes are made to the error environment.

The SLQ-32 common data handlers incorporate a check of field size versus

data size and trap to the executive on violations.

INVALID EXECUTIVE REQUESTS AND UNSCHEDULED RETURNS

As the executive module performs services for the software tasks, it
requires input of various types. This input may be erroneous. Errors of
this type account for approximately 2 percent of all system halts and are
typically caused by out-of-sequence operations or non-re-entrant interrupt
handler code. By checking the validity of all input the executive traps
bad service requests.

UNKNOWN INTERRUPTS

When a device code is presented to the ROLM 1606 auto branching interrupt
sequence a branch will be made to the appropriate interrupt handler. If this
device code is not normally expected the event may be considered as an un-
known interrupt. Typically, unknown interrupts are due to hardware failures.
If the interrupt is merely a single time occurrence which does not tie up
the interrupt request line, it can be reported by the executive and ignored.
However, if more than a specific number of interrupts occur within a certain
unit of time then the situation is considered to be a high frequency unknown
interrupt and processing is halted. This allows the tactical operator a
notification of the problem and he may attempt to restart or choose to run
diagnostics.

PRIVILEGED INSTRUCTIONS

The SL0-32 software structure allows each task the capability to execute
such privileged instructions as INTEN or INTDS implemented through device
code 77. Additionally, the display data to panel instructions is trapped by
the executive and executed for the users. All other privileged instructions
are not allowed in user mode. Errors of this type occur for reasons similar
to the unimplemented instruction trap.

STATUS INFORMATION

In addition to stopping program execution as soon as an eventually fatal
error is detected the SLQ-32 operational software attempts to save as much
historical data as efficiently possible. Register contents are saved at a halt
along with a derived PC and other status indicators. The software keeps track
of the last 100 key locations encountered, the number of interrupts per device
code, the count and location of DMA violations, and the last message sent
to each task. Additionally, for program performance analysis, the number
of entrances per task, maximum time per task, and average time per task are
maintained. This data often gives good clues as to problem solutions.

ROLM 1606 SIMULATOR

A11 the techniques so far discussed assist in debugging problems in a
full system configuration. Ideally most problems should be found in new or
modified code prior to actual insertion into an existing system load. To
accomplish adequate unit testing of individual segments of software code
(i.e., routine or set of routines) when a ROLM 1606 computer is not available
or access is severely limited, a 1606 simulator has been developed to run
under the A0S operating system on a Data General ROLM Eclipse computer. This
simulator interacts with a user at a standard AOS terminal. The save file
image is executed from a disk file and utilizes AOS paging algorithms to
execute within one 1 KW pages.

A large range of debugging commands is available including:

breakpoint

instruction step

start/continue

panel instruction

deposit/examine memory locations
deposit/examine status indicators
deposit/examine accumulators and registers
initiate/print jump trace

timing trace

halt

Use of the 1606 simulator to unit test software segments allows controlled
testing of all decision paths. Such common errors as badly encoded tests and
improper access of data via index or indirection are easily found. Complete
control of the software environment encourages more exhaustive testing in
various data configurations. Timing problems are generally difficult to

uncover with this method, but clever testing can be used to force certain
re-entrance situations. Since the 1606 simulator runs under A0S, several users
may debug independently at the same time and so no longer be dependent on
actual ROLM 1606 computer availability schedules for initial testing.

CONCLUSION

Effective problem resolution requires that errors be detected as close to
the primary source of error as possible. Whenever tactically possible,
execution should be halted and a core dump taken or equivalent data extracted.
These requirements are confirmed by the successful solution of 98% of 500
separate SLQ-32 system halts. Ideally, software errors should be solved before
insertion into a working system. Segment simulation on a non-target computer
facilitates this goal.

ARTS BETA TESTING REPORT

Michael €. McCune
Command, Control, and Communications Corporation
Torrance, California

ABSTRACT

Command, Control and Communications Corporation (4C) has been a test site for the
ROLM Advanced Real Time System (ARTS). Our tests utilized existing commercial system hard-
ware and software, which has been operating under AOS for several years in a multitasking, multi-
processing, and multiple computer environment. This paper will discuss our experiences with
ARTS in terms of compatibility with AOS, ease of transmission between AOS and ARTS, and func-
tional areas of ARTS which were tested. Relative and absolute performance of ARTS versus AOS
as measured in our system environment will also be presented.

1. INTRODUCTION

Command, Control and Communications Corporation (4C) has conducted
BETA testing of the ROLM Corporation Advanced Real Time System
(ARTS) . This paper discusses the goals, methodologies, and re-
sults of this BETA test project. 1In the paper, there is an intro-
duction to 4C, a definition of the characteristics of the real
time systems which 4C develops and produces, an establishment of
the need for such an operating system as ARTS, and a report on the
conduct and results of the ARTS BETA testing.

2. INTRODUCTION TO 4C

4C was established in 1972 as a systems house for tactical systems
and applications. 4C's primary products are special purpose
computer systems for simulation (data 1link, radar, IFF), tactical
applications (such as data link buffers, radar processing systems,
tracking systems), and test beds (for JINTACCS testing, opera-
tional effectiveness evaluation). 4C also performs software
development and hardware development and has produced a number of
products, such as a CMS-2M compiler for ROLM and Data General
computers, networking software for these computers, and numerous
software tools. Hardware products, besides complete systems,
include tactical data 1ink modems and bhuffers, radar and IFF
target extractors, and numerous other computer interface devices.
4C customers include the U. S. Services, U. S. Joint Service
projects, NATO countries, foreign military sales (FMS), and other

countries.

3. NEED FOR A REAL TIME AOS

Over a period of time, the requirements for the various 4C system
products have evolved to become quite demanding and complex. As
shown in Appendix A, (Figure 1), the requirements were initially
satisfied with Data General NOVA and ROLM 1483 processors. These

early systems had a single computer and a single process to exe-

cute on that computer.

All the programs were memory resident; the programs were written
in assembly language; the system performed a single, fixed func-
tion, or a single set of fixed functions; and the arithmetic
requirements were generally satisfied by fixed-point arithmetic.
Over the years, the requirements have grown to the point that the
software is now multiple processes which execute on one or more
computers; these processes are primarily memory resident, but may
have some programs which operate on demand; the programs are now
written in several 1langquages, including 4C's implementation of
CMS-2M, FORTRAN, and Assembly language; the system performs a
number of fixed functions and may include additional (variable)
functions as an outgrowth of specific customer requirements; and,
finally, the computational environment now requires a mix of fixed
point and floating point arithmetic. Figure 2 (Appendix A} de-
picts the configuration of a typical large system. In this system
there are several processors: one or more ECLIPSE processors are
present as the major data processors in the system, and there are
one or more NOVA-type processors that are used for controlling the
unique input/output devices required in the system configuration.
All processors are interconnected via a Multi-processor Communi-
cations Adaptor (MCA).

In the typical system configuration, the NOVA computers run a
proprietary executive program developed by 4C, and the ECLIPSE
computers are under the control of the Data General Advanced
Operating System (AO0S). This operating system was selected
because the computing environment for our systems was more demand-
ing than could be satisfied by RDOS and because the Advanced
Operating System offered significant improvements in flexibility
and capaBility over RDOS. Figure 3 (Appendix A) depicts the
typical hardware environment for an A0S system. Of course there

is an ECLIPSE CPU and its memory. The most notable requirement

from a MIL-SPEC system or multi-processor system point of view is
that AOS requires not only a terminal, a real time clock, and a
program interval timer, but it also requires a disk and a mag tape
or diskette. The single processor environment might be expected
to have all of these devices, but in a multi-processor environment
or a MIL-SPEC environment the requirement for disk and mag tape is
unfortunate, because these devices are not only expensive but are

comparatively unreliable, large, and heavy.

AOS is also a commércial operating system which has been designed
to support a wide variety of system capabilities and modes of
operation. Because of this flexibility and generality, users of
AQS pay a certain penalty in terms of system throughput and over-
head. 1In a real time application, the system overhead of A0S is,

at the minimum, undesirable and may, in fact, be unacceptable.

The need for a real time AOS is, therefore, based upon the follow-
ing requirements. First, we want higher system throughput than is
possible with AO0S. This increase in throughput must be achieved
without changing application software, without changing utility
software (such as 4C's CMS-2M compiler or networking software),
and without requiring extensive retraining of programmers and
support personnel. Second, we want to eliminate the need for the
disk and mag tape unit for every computer in a system configu-
ration. While the system requirements may require one or more of
these devices for the system mission, it is very undesirable that
the operating system itself require the presence of these devices
on every ECLIPSE or MIL-SPEC ECLIPSE CPU. Third, we want a
smaller and more configurable AOS so that the memory consumption
of the operating system is both minimized and optimized for the
application. Figure 4 of Appendix A summarizes a number of char-

acteristics that would exist for a real time AOS.

4, ARTS BETA TEST PLAN

In the first half of 1980, 4C began discussions with ROLM Corpo-
ration about the ARTS system, which was then under development.
4C had firmly established its internal need for a product such as
ARTS, but a survey of available operating systems proved that
there was no satisfactory replacement as yet available for AOS.
ROLM, on the other hand, had developed the MIL-SPEC ECLIPSE and
had also perceived the need for a real time version of A0S. Since
the ARTS development so closely matched 4C's need for an advanced
real time operating system, and because 4C was uniquely experi-
enced in real time applications with A0S, 4C and ROLM agregd to
establish a BETA test project for ARTS at 4C headquarters 1in

Torrance, California.

The ARTS BETA test project at 4C was established with four initial
goals, First, we wanted to verify the compatibility of ARTS and
A0S in the context of 4C's system applications. The second goal
of the BETA test project was to identify all problems encountered
during the testing of ARTS and forward the problem description to
ROLM for correction. The third goal was to verify that problems
had been corrected when new updates of ARTS were returned from
ROLM. The fourth goal, and perhaps the most important one, was to
determine the relative and absolute performance of ARTS and AOS in
terms of a number of important characteristics, such as system
overhead, scheduling delays, and the execution times of common

system calls.

A five-step approach was established for conducting the BETA test
project. The initial step was to install ARTS and become suffi-
ciently familiar with its use so as to be self-sufficient. The
second step was to perform some hasic operational checks on ARTS
to verify that it was ready to be used in more detailed testing.
The third step was to perform a set of detailed compatibility and

integrity tests. This step used an existing set of test programs

120

which performed an involved set of inter-task, inter-process, and
inter-CPU data exchanges. The nature of this test was such that
it exercised a majority of the system features which are relied
upon in the 4C systems. The fourth step was to perform "side-by-
side" functional timing tests for AOS and ARTS. These tests would
be accomplished using programs developed specifically for this
purpose. The functional timing tests would not only verify that
ARTS and A0S can execute the same programs, but the test program
outputs would provide relative and absolute measures of the per-
formance, throughput, and/or timing of typical A0S and ARTS func-
tions. The fifth and last step of the data test project would be
to perform a “side-by-side" system performance analysis of an
actual 4C real time system. This test would use measuring tech-
niques such as histograms and idle-time measurements to determine
the relative responsiveness and throughput of an actual system

operating under ARTS and AOS.

5. BETA TEST RESULTS

The BETA test project was Jdinitiated over a period of a week.
During this week there was a team of four people from ROLM on site
at 4C headquarters in Torrance. This team performed the initial
installation of ARTS and provided a short introduction to using
ARTS and configuring ARTS for specific system applications.
During the subsequent days, an intensive effort was made by the
ARTS installation team and 4C representatives to create and verify
an 1initial operational capability for ARTS. This effort was
successfully completed within that time, and an existing 4C system
which had been running under A0S was brought up and demonstrated
operating under ARTS (see Fiqure 5., Appendix A). This initial
system was a 4C SIMTRACC configuration which included a graphic
display, the operation of tactical data links (TADIL-B and
ATDL-1), and online data collection and data reduction operations.
The system involved five interrelated user processes and had a
number of "IDEF" devices within the system. It was agreed by ROLM

and 4C that this initial installation and operation was highly
successful. Although a number of start-up problems were discov-
ered, the team operated well and the majority of problems were

corrected on the spot.

After the initial installation efforts, 4C entered into a compati-
bility and integrity test phase. This test phase consisted of
exercising a variety of ARTS system capabilities using some exist-
ing functional test which had been previously developed by 4C for
testing its proprietary network transaction package. This test
was considered to be a reasonably exhaustive exercise of ARTS
capabilities (from 4C's point of view) in that it included the
following elements: inter-task communications, inter-process
communications (using IPCs and shared files/pages), inter-CPU
communications (using MCAs), and file input and output. Results
of these tests have been summarized in Figure 6. During
this test phase, the inter-task communications worked immediately.
The 1inter-process communications, 1inter-CPU communication, and
file I/0 portions of the test each found some errors within ARTS.
As these errors were discovered, they were identified to ROLM, and
ROLM responded with a combination of patches and subsequent re-
leases so that in a reasonable period of time all errors were

corrected and all tests were fully operational.

At this point, it was deemed worthwhile to begin the functional
timing tests comparing ARTS and AOS. It was felt that ARTS had
achieved sufficient maturity so that the ARTS configuration which
we had in house (pre-release version #.05) would provide meaning-
ful timing results. Special timing tests were devised for the
following system functions: (a) system overhead; (b) system
scheduling overhead; (c) inter-process communications (IPC)
throughput; (d) ?XMT throughput; (e) ?REC throughput; (f) ?XMT/
?REC throughput; (g) character I/0 output rate; (h) file use
(OPEN/READ/CLOSE) throughput; (i) block I/O (?RDB/?WRB) through-
put; (j) shared page re-map throughput. These tests were all

designed so that they would provide useful results regardless of

121

122

the processor configuration details, such as memory size, memory
interleaving, processor type, or processor peripheral configura-
tion. The implementation of each of these timing tests is de-

scribed below.

(a) System Overhead Test. This test operates as a single

process with two tasks, The first task controls the

initialization of the second task and also provides the
basic timing interval for the measurement. The second
task consists of an idle loop of known and fixed con-
struction. The purpose of the test is to count the
number of times that the 1idle loop can execute in a
known period of time. The amount of available time in
the system can then be expressed in terms of the number
of loops per second. In addition, an identical timing
loop was established in a stand—alone system, and the
computer hardware capacity for executing the timing loop
was established. These two figures were sufficient to
determine the percentage overhead of the operating
system and from that to determine the amount of CPU time
which is available for application processing. The
system overhead and available time fiqgures thus derived
were used in other tests in determining the time re-
quired to execute other system functions. Figure 7 of
Appendix A summarizes the test results for the System

Overhead Test.

(b) System Scheduling Overhead Test. This test consisted of

using the system overhead test described above, operat-
ing in the presence of 1, 2, and 3 other processes. By
determining the amount of available CPU time when 1, 2,
and 3 other processes are executed, it is possible to
determine the amount of time spent scheduling the opera-
tion of the background processes. The background pro-

cesses all executed the same code which was a single

(c)

(d)

task. This task performed a ?DELAY system call specify-
ing an activation rate of one activation per clock tick.
Therefore, each of these processes represented a Kknown
frequency of operation. In addition, this test was
varied across three standard clock rates (10, 14@, and
1009 Hertz) so system overhead itself was known at the
common clock rates. Figure 8 of Appendix A summarizes
the test results for the System Scheduling Overhead
Test.

IPC Throughput Test. This test executed as two pro-

cesses, One process performed an echo function wherein
it received an IPC message and immediately returned it
to the sender. The second process operated as two
tasks; one task performed the measurement interval
control and the second task initiated the IPC message to
the echo task and receiving the response from the echo
task. The output of this test is a measurement of the
number of cycles of IPC send/receive which can be per-
formed in one second. Figure 9 of Appendix A summa-

rizes the results of the IPC Throughput Test.

?XMT Throughput Test. This test and test (e), which is

the ?REC Throughput Test, were used to establish some
baseline information in support of test (f). The ?XMT
test and ?REC test were a one-process, two task test
which measured the number of times that a ?XMT and ?REC
system call could be performed. Because there is a
decision function implicit in the ?XMT and ?REC pro-
cessing, the mailbox was kept permanently empty for the
?XMT test and permanently full for the ?2?REC test.
Figure 9 of Appendix A summarizes the results of the
?XMT and ?REC Throughput Tests.

123

124

(e)

(£)

(9)

(h)

See (4).

?XMT/?REC Throughput Test. This test was performed as a

single process with three tasks. One task performed
initialization and test measurement interval control,
while the other two tasks operated as a ping-pong,
multi-tasking test. Task A would do a ?XMT to awaken
Task B and then a ?REC. Task B would then do a ?XMT
operation. The output of this test was a count of the
number of complete cycles which were executed in one
second. Figure 9 of Appendix A summarizes the results
of the ?XMT/?REC Throughput Test.

Character I/0 Output Rate Test. This test was intended

as a measure of system overhead and as a measure of
responsiveness to interrupts when performing interrupt-
character output. The program operated as a single
process with two tasks. Task 1 performed initialization
and test measurement interval control, while Task 2
operated in a hard loop outputting fixed length records
of ASCII characters to the system control console, known
as QCONA. The results of this test would be the number
of characters per second which could be output on a
9,68A-bit-per-second, serial asynchronous 1line. A
maximum output rate would be 968 characters per second.

The results of the Character I/0 Output Test are found
in Figure 10 of Appendix A.

File Use Throughput Test. This test 1is intended to

indicate the relative performance of the operating
system in performing an OPEN/READ/CLOSE cycle. A file
is opened, 5@ records of 8@ bytes each are read, and
then the file is closed. The output of this test con-
sists of a count of cycles which can be executed per
minute. Figure 10 of Appendix A contains the results of
the File Use Throughput Test.

(1) Block I/0 Throughput Test. This test measures the
number of ?RDB and ?WRB system calls which can be ex-

ecuted per second. For the purposes of this test, the
block I/0 device was selected to be an MCA. This device
was selected because, with the cooperation of a second
CPU, it is possible to use the MCA as a zero-latency DMA
block I/C device. The output of this test is the number
of ?RDB and ?WRB calls which can be executed per second.
Now this figure is of importance because the ?WRB and
?RDB calls are the most basic element in performing I/0
to DMA devices, such as disks, tapes, and MCAs. Figure
10 of Appendix A contains the results of the Block I/O
Throughput Tests.

(1) Shared Page Re—-Map Throughput Test. This test operated

as a single process with two tasks. One task performed
initialization and measurement period control, and the
second task performed ?SPAGE system calls inside a tight
loop. The ?SPAGE call is important because it is the
basic element used in performing the wvirtual overlay
function within A0S and ARTS. All CMS-2M and FORTRAN
programs in our systems use the ?SPAGE mechanism when
performing procedure calls and subroutine calls to
procedures and subroutines which have been bound as
overlays. The output of this test is a count of ?SPAGE
calls which can be executed per second. The test
allowed the number of pages read by each ?SPAGE call to
be varied so that the system response can be measured as
a function of the number of pages being read. Figure 11
of Appendix A summarizes the results of the Shared Page
Re-Map Test.

At the time of writing of this report, the side-by-side system
execution tests had not been completed, due to 4C scheduling
conflicts, Subjective observations are that responsiveness is
excellent with ARTS, but quantitative measurements are not
available (see Figure 12).

125

126

6. SUMMARY

4C feels that the Advanced Real Time System definitely meets the
4C goals for a real time replacement for AOS. ARTS is faster,
smaller, and more configurable than A0S, and it is compatible with
A0S to a very large extent. The areas of incompatibility are
limited to those functions which are not a part of the projected

ARTS environment, and once these differences were understood, we

had few problems working and operating within the ARTS capabili-
ties. 4C feels that the existence of ARTS is very complementary to
A0S, and it naturally lends itself to an ideal program development
and checkout environment: programs can be developed under A0S,
debugged under A0S, and then installed under ARTS for final check-
out and delivery. Because ARTS is operable on both MIL-SPEC and
commercial ECLIPSE computer systems, it is possible to develop
both commercial and MIL-SPEC versions of a system and have them
execute exactly the same programs. Finally, the close compati-
bility between ARTS and AOQS means that our software investments in

applications software, the CMS-2M compiler, and other software

utilities are preserved.

In conclusion, 4C is happy to recommend ARTS to the ROLM and Data
General computer communities, and 4C hopes to use ARTS in its own

products as soon as possible.

APPENDIX A
ARTS BETA TEST REPORT BRIEFING CHARTS

EVOLUTION OF REQUIREMENTS
NOVA/ ECLIPSE/
1603 - MSE

1 PROCESS

MEMORY RESIDENT
ASSEMBLY LANGUAGE
FIXED FUNCTION
FIXED POINT

MULTIPLE PROCESSES

PRIMARILY MEMORY RESIDENT
CMS-2, FORTRAN, ASSEMBLY MIX
FIXED AND VARIABLE FUNCTIONS
FIXED POINT/FLOATING POINT MIX

Figure 1

TYPICAL LARGE SYSTEM
CONFIGURATION

ECLIPSE 4 O SPECIAL ECLIPSE
PERIPHERALS!
TADIL DISPLAY
PROCESSING CONTROL
T0 OTHER
PROCESSORS
g — e
NOVA NOVA
FRONT FRONT
END END
DATA LINES DATA LINES

Figure 2

127

AOS HARDWARE ENVIRONMENT

— TERMINAL

ECLIPSE
CPU

—— RTC

PIT

[—— MAG TAPE/DISKETTE | EXPENSIVE,

128

UNRELIABLE,
DISC LARGE, AND HEAVY

MEMORY

—— OTHER PERIPHERALS

Figure 3

FEATURES DESIRED IN AREAL TIME AOS

AOS COMPATIBILITY

e (ODE + DATA STRUCTURES
e SYSTEM CALL
e PROGRAM FILE (NO RE-BIND NEEDED!)

MEMORY RESIDENT

SYSTEM KERNEL, SYSTEM OVERLAYS, AND SYSTEM DATA
GHOST + GHOST OVERLAYS

PMGR

APPLICATIONS PROGRAMS, OVERLAYS, AND DATA

IPC SPOOL FILES
REAL TIME RESPONSE

e LOW OVERHEAD
e FAST SYSTEM CALL PROCESSING

MINIMAL 170 PERIPHERAL REQUIREMENTS

DISK ONLY
TAPE ONLY
MCA ONLY
NONE OF THE ABOVE

Figure 4

INITIAL RESULTS

e ARTS INSTALLATION TEAM WAS ON SITE FOR 4 DAYS
e ARTS WAS INSTALLED AND CONFIGURED (BY 4C) IN ONE DAY

e ROLM AND 4C PERSONNEL HAD A 6-PROCESS, REAL TIME SYSTEM
RUNNING WITHIN 4 DAYS, SYSTEM INCLUDED:

e GRAPHIC DISPLAY

e TACTICAL DATA LINK (TADIL-B)
e DATA COLLECTION/REDUCTION

e 4 "IDEF” DEVICES ACTIVE

o INITIAL PROBLEMS WERE:

e NONSUPPORTED CALLS (?CREATE)
e (ODING ERRORS (APPROXIMATELY 10 WERE FOUND)

Figure 5

COMPATABILITY/INTEGRITY TEST RESULTS

EXISTING FUNCTIONAL TEST WAS DEVELOPED FOR VERIFYING OPERABILITY OF A
4C PROPRIETARY NETWORK TRANSACTION PACKAGE WHICH SUPPORTS

e INTER-TASK COMMUNICATIONS
e INTER-PROCESS COMMUNICATIONS

- IPC
- SHARED FILES/PAGES

e INTER-CPU COMMUNICATIONS
- MCA
INTER-TASK COMMUNICATIONS WORKED IMMEDIATELY
INTER-PROCESS AND INTER-CPU COMMUNICATIONS TESTS FOUND CODING ERRORS
ALL TESTS ARE NOW FULLY OPERATIONAL

Figure 6

129

SYSTEM OVERHEAD MEASUREMENTS

SYSTEM OVERHEAD = MAX-MEASURED « 3qq

MAX
AVATLABLE TIME (usec) = MEASURED « 706
MAX
CLOCK LOOPS PERCENT OVERHEAD AVAILABLE TIME
RATE A0S ARTS A0S ARTS AOS ARTS

10HZ 80050 107236 25,47 0.087% 745,836 999,134
100KZ 76961 106965 28,3 0.34 717,057 996,608

1000HZ 45292 102365 57.8 4,6 421,992 953,750
(MAXTMUM LOOPS = 107,329)

Figure 7

SCHEDULING OVERHEAD RESULTS

SCHEDULING OVERHEAD IS DETERMINED BY CHANGE IN AVAILABLE
PROCESSING (IDLE) TIME WITH 1, 2, OR 3 BACKGROUND TASKS
RUNNING.

NUMBER A0S
OF PROCESSES 10HZ ~ 100HZ 1000HZ 10HZ 100HZ 1000HZ

2,952 27.1% - 1.732 17,07 82,9%
5.44 49,4 - 3,12 31,0 -
7.65 - - 4,54 45,1 -
AVERAGE/ 2,67 25,5 1.56 15,5
PROCESS
A0S RESCHEDULE = 2600 uskc

ARTS RESCHEDULE ¥ 1550 nskc

Figure 8

130

THROUGHPUT TEST RESULTS

CALL/TEST TIME PER CYCLE (usec)
TYPE A0S ARTS
IPC 10968 8764
2XMT 81 75
?7REC 74 67
7XMT/?REC 726 1022*

® - SuspecTeD ARTS ConinNe ERROR

Figure 9

I/0 TEST RESULTS

e CHARACTER I/0 OUTPUT TO "acOne”

A0S
ARTS

783 CHARACTERS/SECOND

830 CHARACTERS/SECOND

e FILE I/0 (OPEN, READ 50 RECORDS, CLOSE)

AOS
ARTS

80 cYCLES/MINUTE
266 CYCLES/MINUTE

e BLOCK 1/0 OF 1 WORD TO/FROM AN MCA
A0S ARTS

?WRB 2880 usec 3000 usec
?RDB 2825 usec 3000 usec

Figure 10

131

SHARED PAGE RE-MAP TEST RESULTS

NUMBER OF TIME PER CALL

PAGES "READ"” A0S ARTS
1 1551 wusec 1332 usec

2 2187 1705

3 2793 2072

4 3421 2443

8 5873 3934

12 8380 5430

16 10968 6891

Figure 11

SYSTEM PERFORMANCE TEST RESULTS

e THESE TESTS ARE IN PROGRESS BUT INCOMPLETE

e SUBJECTIVE OPINIONS THUS FAR:

132

ARTS IS PERFORMING AS EXPECTED

ARTS START-UP/RESTART TIME IS AN
ORDER OF MAGNITUDE LESS THAN THAT OF AOS

WE ANTICIPATE A 30%Z + IMPROVEMENT
IN SYSTEM THROUGHPUT

Figure 12

REAL TIME SOFTWARE TOOLS AND METHODOLOGIES

M. J. Christofferson
E-Systems Inc., Melpar Division
Falls Church, Virginia

ABSTRACT

In designing software for a real time processing system of any complexity, the software
analyst is presented with a wide variety of design choices and software structures to use. Real
time systems are often characterized by high speed processing and throughput as well as
asynchronous event processing requirements. These requirements give rise to particular imple-
mentations of parallel or pipeline multitasking structures, of inter-task or inter-process communi-
cations mechanisms, and finally of message (buffer) routing or switching mechanisms. These
mechanisms or structures, along with the data structure, describe the essential character of the
system.

This paper reports on attempts by the author and his co-workers to isolate these common
structural elements and mechanisms and formalize their implementation in the form of routines,
tasks or macros — in other words, tools. The tools which have been developed support or make
available the following:

— Re-entrant task creation

— Generalized message routing techniques

— Generalized task structures/task families

— Standardized inter-task communications mechanisms

— Pipeline and parallel processing architectures in a multi-tasking environment

Tools development as discussed above raises some interesting prospects in the areas of
software instrumentation and software portability. These issues will be discussed foilowing the
description of the tools themselves. The tools described have been specifically developed for a
ROLM 1666 under RMX/RDOS.

133

134

This paper describes the set of software tools developed
at Melpar to facilitate the design and implementation of real
time software systems. It appears scme of these tools address
problems which are generic to the development of real time
software systems, and therefore of general interest. Some
preliminary statements must be made prior to proceeding to

a description of the software tools sets.

The software systems in which these tools are used are
characterized by their event driven nature, their high speed
I/0 and processing requirements, and frequent severe
restrictions of processor size and weight. The functional
requirements of these systems demand real time, multi-tasking
architectures. No adequate higher order language is available
which specifically addresses the issues pertinent and
generic to real-time system architectures. This coupled
with the memory restrictions associated with size and weight

constraints resulted in a decision in favor of Assembly

language.

There are, of course, many notorious disadvantages to
Assembly language programming, which by itself does not
really address some of the critical issues of real time
programming. The solution to this dilemma is to develop soft-
ware tools, constructs, or mechanisms specifically designed

to address these issues.

The tools developed at Melpar fall into four major
categories. The first of these is the source language
constructs, which consist of a library of macros that provide
some of the features of higher order, structured programming
languages. The second category consists of a library of
generalized memory management routines, which perform buffer
allocation, linked list access, and similar functions. The
third category consists of a variety of task creation and
inter~task communications constructs. The fourth category
consists of generalized multi-tasking and process communi-
cations structures. These four categories suggest a hierarchy,
and indeed they are listed in order of development. Further-

more, each successive category is built on its predecessors.

As mentioned above, the first level of the software
tools hierarchy consists of source language constructs.
These are a collection of macros which provide some of the
control structures offered by higher order languages such as
PASCAL. These structures include IF-THEN-ELSE, WHILE (boolean),
DO, DO-UNTIL (boolean), CASE, and FOR loop constructs. It
is not the intention of this paper to describe these lower
level tools in detail. Suffice to say that they greatly
assist the programmer to produce, at the Assembly language
level, well-structured, maintainable and easily modified code.
In short, these tools are designed to overcome some of the

many disadvantages of Assembly language programming.

135

136

An example of a program which employs these source
language tools is given in Figure 1. It should be stated
that these macros resolve the relocation properties (register,
absolute,relocatable, external, and so forth) of the symbols
referenced in arithmetic and boolean expressions. Any level
of nesting is allowed, as is any properly formed boolean
or arithmetic expression. Furthermore, all of these macros

are completely re-entrant.

The three higher levels of the software tools hierarchy
may be considered as system programming and design tools.
Tausworthe (ref. 1) states that "Real time programming efforts
are dominated by the human incapability to comprehend the
total picture of what is really going on in the computer on an
instant by instant basis." One of the most important roles of
the higher level software tools is to add to the mental set of
the system designer, providing a language with which to describe
real time architecture and mechanisms. It has been our
experience that the availability of these tools has indeed
been a great boon to our systems designers, partly because

they address the problem mentioned by Tausworthe.

There are two ideas which have driven the development

of the higher level tools. The first idea was to develop

and formalize, where possible, general software mechanisms
for handling commonly employed real time, multi-tasking
system functions. The second idea was to treat these
standardized mechanisms as an augmentation or extension

of the resident operating system of the machine. In this
manner, the mechanisms become building blocks with which

to design real time software systems.

The approach taken in the development of these con-
structs is reflected in the hierarchy mentioned before.
First, generalized buffer and memory management utilities
were developed. These utilities include buffer pool con-
struction routines, buffer allocation and de-allocation
routines, and linked list management routines. Not much
need be said about these, as such utilities are fairly

common.

The next step in the ascending hierarchy consists of
the inter-task communications and task spawning tools.
These tools enhance the system tasking and inter-task
communications mechanisms of the operating system, using

a macro approach.

The final layer of the software tools hierarchy

builds upon the two previous layers, and consists of highly

generalized multi-tasking and inter-process communications

structures. Our description of these last two levels of

137

138

the hierarchy begins with task communications and spawning

tools.

These tools were designed to support re-entrance at
the task level and standardize common inter-task communi-
cations mechanisms. They are transportable from system
to system, being completely independent of application.
The tools in this level of the hierarchy use the macro

assembler facility to standardize the following functions:

1) task or process creation

2) queueing of a buffer and transmission to another
process

3) de-gqueueing of a buffer sent by another process

4) FORK-JOIN structures for concurrent processes.

The task creation tool is known as the CTASK mechanism.
CTASK allocates a buffer from the buffer pool and passes
the address of the buffer to the created task via the
data link. This buffer is used as a stack area for the
created task. In this manner, re-entrant tasks are easily
created. Furthermore, any number of arguments may be
inserted into the pool buffer in a pre-determined order
prior to task creation. In this manner, when the task
is created, any number of arguments may be passed to it

on the stack buffer.

The format of the CTASK call is as follows:
CTASK ENTRY ID PRIORITY DATALINK STACKSIZE <ARGLIST>

The arguments ENTRY, ID, PRIORITY and DATALINK are arguments
supplied to the .TASK system call. The remaining arguments,
including the optional argument list, are peculiar to the
CTASK mechanism. STACKSIZE is of course the size of the
stack buffer to be passed to the task through the data

link. Any optional arguments are placed on the stack

buffer, as illustrated in Figure 2.

The created task first calls the macro ITASK, which
requires no arguments. ITASK initializes the stack registers
and extracts the user-specified DATALINK from the stack and
places it in register 2. The KTASK macro is called when
the task is ready to remove itself from the system, and
causes the stack buffer to be returned to the pool prior

to issuing a .KILL task call.

As we shall later see, CTASK, ITASK and KTASK play
an important role in the development of subsequent

structures.

Inter-task communications are facilitated by the
QREC and QSEND macros. QSEND links a buffer to a specified
linked list and transmits, via the .XMT task call, a

message to ready the receiving task, if suspended. QREC

139

140

is the macro called by the receiving task to accept the
transmitted buffer from its linked list. QREC searches
the indicated prioritized linked list for the highest
priority non-empty list and retrieves that buffer. If
all the lists are empty, then the task will suspend on

a .REC task call until a subsequent QSEND operation is
invoked by another task. Figure 3 illustrates the QSEND/

QOREC mechanism as it operates.

Under development are tools for implementing FORK-
JOIN structures for concurrent processes. FORK-JOIN
structures are discussed in detail by Tausworthe (ref. 1) and
the concept is illustrated in Figure 4. However, as yet
the details of syntax and implementation have not been
completely worked out. In all probability, the FORK-
JOIN mechanism will use the CTASK macro as a sub call

to create independent processes.

It is now time to address the last level of the
software tools hierarchy, which consists of generalized
multi-tasking and inter-process communications structures.
The generalized multi-tasking structures shall be described

first.

The generalized multi-tasking structures were developed
to support tasks of commonly encountered types. Thus far

three major "families" of tasks have been defined. The

first family is best described as consisting of permanent
tasks which are driven by the receipt of buffers on a linked
list. The second family of tasks are temporary tasks,

which perform a function and then perform a KTASK operation.
Since TCB's are by no means a super-abundant system resocurce
in most operating systems, a limited task spawning feature
has been associated with temporary tasks. This permits a
prioritized throttling process which governs task creation,
thus preventing any attempt to spawn an excessive number of
tasks during periods of high system activity. The third
task family is the concurrent process task structure. These
tasks will be created by the as yet undefined FORK-JOIN

mechanism mentioned before.

These task structures are implemented as task "shrouds"
which call one or more embedded "personality modules." The
task shroud contains the general-purpose code which executes
the function of the applicable task family. This code is

table driven by parameters passed to the task at creation

time via the CTASK mechanism. The address of the personality

module is itself one of the arguments passed to the task
at creation time. These structures are completely re-
entrant, thereby permitting several applications modules
to be served by the same task level support code. The
task shroud code uses the task communications and memory

management structures as integral building blocks.

141

142

Figure 5 illustrates the basic structure of the
three defined task shrouds. We shall choose one of these

shrouds as an example for discussion.

The re-entrant task shroud TPFLL is designed to
support a permanent task which is driven by receipt of
buffers on an input linked list. Therefore, the task
must perform a QREC operation, retrieving a buffer from
the linked list specified by the creation argument list.

It must then call the specified personality module, passing

this buffer to that routine. Upon return from that routine,

it must loop back to the QREC call to retrieve the next
input buffer. Obviously, these are the minimum functions
which a task of this type must perform. Other generalized
processing functions may be associated with tasks of this
family, and duly inserted in the code of the shroud. For
example, one may wish to call a routine once upon initiali-
zation of the task. The critical notion behind the concept
of a task shroud is, of course, that once a generic family
has been identified (and coded), this structure may be

used as a building block by which to implement the
architecture of the system. One obvious advantage of

this is that the code need not be reproduced. It also
addresses the problem described by Tausworthe (ref. 1) in

it adds to the conceptual vocabulary of the systems

designer.

i
'y

Examples of the limited spawning and concurrent
processing (FORK-JOIN) task shrouds are also illustrated

in Figure 5.

Figure 6 illustrates skeleton architecture of a hypo-
thetical system, using all the task shroud families currently
defined. The diagram consists of several blocks which
represent tasks. The task family name appears in the upper
portion of the block, and the associated personality module
in the lower portion. The figure clearly illustrates the
separation of the software system architecturée from the
system functional architecture. The former is represented
by the task shrouds and the control and data connectives
between them. Notice that this representation is not
dependent upon the specific details of the applications-
specific software. The system functional architecture is
represented by the group of personality subroutines. The
systems designer can easily construct the software archi-
tecture, and turn his attention to the design of the
functional architecture of the system. The applications
programmer now needs only to write subroutines, which can
be debugged in place rather than in some hastily contrived
test frame. This dramatically improves performance in both

debug and system integration phases.

We will now turn our attention from generalized multi-

tasking structures to generalized inter-process communications

143

144

constructs. The most interesting of these is the construct
called ROUTER. ROUTER is simply a re-entrant subroutine
package which makes it possible for a process to communicate
with another process on a logical basis, without explicit
knowledge of the physical communications path. This is
accomplished by defining a data structﬁre called the ROUTER
table. This is a parallel table, containing the information
required to establish the physical communications path (e.g.,
linked list header address, message cell address, subroutine
address, etc.). A particular communications path is identified
by a so-called "logical unit" number, which is merely an index
into this parallel table pointing to the appropriate communi-
cations path. The source process passes to ROUTER the

logical unit number of the destination process and the data

to be transmitted. The concept of the ROUTER mechanism
becomes especially useful in consideration of modular

design and software transportability requirements.

The thrust of this paper has been to show that the
construction of generalized software tools can aid in both
the design and implementation of real time software systems.
Several constructs have been outlined above which we believe
have general application in real time systems. However, it
is worth emphasizing once again that much of the value
associated with tools definition and usage is due to the
enhanced software design vocabulary which these tools

provide.

REFERENCE
1. Tausworthe, R. C.: Standardized Development of Computer

Software. Prentice-Hall, 1977.

145

9% L

—-_oC NS

—- O OONAUALEN =DV NAABN—=OOENOaR I

NSO —OOONC I

000441° 075101
0001442° 071101
000443' 0065101
000444'061101

000445°' 100010
177727
000447° 114010
1779777

a00311*071101

tA <4

000550° 065101

0003561° 071101

000606° 061201
000607° 065201
000610° 071201
000611°'060201

NOLllIOVI0000870000700077700007/

'

' NEADY TASKS TIAT ALWAYS RUN
'

NOPILLP77 2777077772727 7272/72/77/7/

CRTSK!

rSit

rsi

rsiu

rsi

LEF

LEF

SET R3 =
SEI' Ro ‘=
XSET Rt

—WHILE (
—IF (

pranm—

=

 —

na {SAVE RETURN ADDR
n2 { PRESERVE RECISTERS
i
o
RO, ITATS {STARTING ADDIt OF TADLE IN RO.
R3,ITAID {ADDRU OF NEXI' COLUMN
13 - nO {LENGTHl OF TADLE e NTASKS =1
0 {INITIALIZE ROV COUNTER
= ITATS < RO 1JUST TO GET STAITED
I NE O) {MAIN LOOP
R1 NI -1)
XSET RI = NPTR < R@ > ;PTR TO OPTION ARCUMENT LIST TOTAL CODE
XSET R2 = RI ¢ 0) {NUHBER OF ARCS IN TIHIS LIST
SET R1 = Rl + R2 yPOINT 'TO LAST ARG IN LIST 159
XSET 2 = NI"IM < RO ¥ 8
WHILE (2 NK RL) !
¥SET 2 = 1 € 0 » N2 <~ ARC
rsil n2 {PUSHL ARG ONTO TIIE STACK
SET M1« L = 1 {POINT TO PREVIOUS ARG 1IN LIST

XSKET R2 = NPIR < RO >
ENDVHILE
1PUSHE MANDATORY ARCS ONTO STACK
VINDEXING ACCROSS THE TALLE
FOR N2 = 0 TO 4
SKI'RL = 4 - R2
SET 1 = At % R + IO
XGET Y = ITATS < R1 >
s
TNDIGR
XSET N2 » NPTR < RO ?
XSET R2 » R2 <€ 0 >

St R2 1PUSH NUMDER OF EXTRA ARCS
SET I = R3 1+ PRESENVE R3
CALLP C.TASK < COTO ERTSK »
L__ SET R3 » Ri +RESTORE R3
ENDIF
SET NO = RO + |
NSET R = ITATS < RO »
l——— ENDWHILE
COTO LEXT
ERTSK¢ CALLJ ERINT
LEXT:)
POP RO yRESTORE CONTEXT
POP N1
FOP R2
PRT

Figure 1

ARG N

CTASK > ARG 2 —> TASK A
(CREATE TASK A) o ARG 1
sp | DATALINK
STACK
BUFFER
FGOR
CTASK ILLUSTRATION TASK A
Figure 2
LINK
TASK A LIST TASK B
. B .
QSEND (TASK B) —_— 0 0 0O —~—>, QREC (TASK A)
(PROCESSING) (PROCESSING)

QREC (TASK B) &—

/QSEND (TASK A)
O O O .

LINK
LIST
A

QSEND/QREC ILLUSTRATION

Figure 3
147

TASK A PROCESSES ,1,2,3

: i TASK 1
FORK (PROCESS 1,2,3) W I
(PROCESSING) ,XMT TO “JOIN” IN TASK A
JOIN (PROCESS 1,2,3) - TASK 283
: | (SAME AS TASK 1)

FORK-JOIN TLLUSTRATION

QUESTION: WHAT IS A CONVENIENT MECHANISM FOR PROCESSES
1,2,83 TO COMMUNICATE WITH THE “JOIN” IN TASK A?

ANSHER: WE’LL SEE LATER.

Figure 4

GENERALIZED MULTITASKING CONSTRUCTS

Shroud Characteristics

Personality Module Characteristics

wn

©o

S
4

STACK BUFFER
FOR TASK SHROUD

D0
QREC - Use Shroud Call Personality Call Personality
Characteristics Routine Routine
) ° ’
(] 0 *
) ° .
Call Personallty Decrement TCB use Inform Parent Task of
outine counter; wake parent completion of process
task If necessary.
.) 0
. . .
. ° .
UNTIL (Forever) LKILL _ LKILL
TPFLL TTLSP TTFJ
Permanent Task Driven Temporary Task with FORK~JOIN Task Shroud
from Input Link List Limited Spawning Feature

Figure 5

148

HYPOTHETICAL MULTITASKING ARCHITECTURE

TTLSP
O O ') O
000 F5 \OO 000 Oo00
TPFLL TiisP TPFLL TPFLL TPFLL
—> —> — —
—> P1 " P2 P3 Py | ”
o

PERSONALITY
SUBROUTINES

—
P1

P2

o
(4
[

PN

TN

P7 TTFJ TTFJ TTF

P11 P12 P13

®® ®

FORK/JOIN PROCESS

CONCURRENT/PARALLEL
PRCCESS

PN = PERSONALITY SUBROUTINE
DN = DEYICES OR EXTERNAL PROCESS

Figure 6

149

USE OF SOFTWARE TOOLS IN THE DEVELOPMENT

OF REAL TIME SOFTWARE SYSTEMS

Robert C. Garvey
E-Systems Inc., Melpar Division
Falls Church, Virginia

ABSTRACT

This paper will discuss the transformation of a pre-existing software system into a larger
and more versatile system with different mission requirements. The history of this transformation
is used to illustrate the use of structured real-time programming techniques and tools to produce
maintainable and somewhat transportable systems.

The predecessor system, which is called SE, is a single ground diagnostic system. Its pur-
pose is to exercise a computer controlled hardware set prior to its deployment in its functional
environment, as well as test the equipment set by supplying certain well. known stimulae. The suc-
cessor system, called FTF, is required to perform certain testing and control functions while this
hardware set is in its functional environment.

Both systems must deal with heavy user I/O loads and a new /O requirement was included
in the design of the FTF system. Human factors were enhanced by adding an improved console
interface and special function keyboard handler. The additional features required the inclusion of
much new software to the original set from which FTF was developed. As a result, it was
necessary to split the system into a dual programming configuration with high rates of inter-
ground communications. A generalized information routing mechanism was used to support this
configuration.

The architectures of the two systems will be presented briefly. The remainder of the paper
will describe the use of the software tools and techniques discussed by Mr. M. J. Christofferson in
performing this upgrade. Special emphasis is placed on the utility of such tools in a system
upgrade effort. The issues of increased programmer productivity and maintainability of software
are also addressed.

151

152

Christofferson (ref. 1) has presented the set of software tools
developed at Melpar to facilitate the design and implementation of
real time software systems. This paper is offered as a commentary on
the software tools set. It is our intent to illustrate the value of
these tools with a case example and a discussion of some quantitative
job performance measures.

The software tools set may be divided into two categories. The
first of these may be referred to as "code level macros" and the second
as "architectural Tlevel tools and utilities."

The first category consists of the Logical Constructs Macros and
the Data Structures Macros, which were designed to overcome some of
the many disadvantages of Assembly language programming.

The second category is of more general interest, as these tools
represent functions which are believed to be generic to most real time
software systems. These tools include the generalized inter-task
communications software, which includes the information routing mechanism
described by Christofferson, and the generalized multi-tasking
structures. They are supported by a host of system level utilities
which include memory management, linked Tist access and other general-
purpose routines.

Christofferson discusses in his paper the notions of separating
applications-specific code from that code which expresses the architecture

of the system, of insulating the architectural level and applications-

specific code somewhat from the peculiarities of the operation system,
and of establishing logical rather than physical data and control
comnectives between modules. The first of these three general
philosophies finds its expressions in the general multi-tasking
structures package, which consists of a collection of commonly applicable
task shrouds. The secondnotion finds its expfession in the generalized
inter-task communications tools.

One of these tools is of particular importance to the case example
which follows these introductory remarks. This is the information routing
mechanism, or ROUTER. This tool allows a task communication entity,
such as a message cell or linked 1ist header structure, or a subroutine
to be referred to on a logical rather than physical basis. It is both
a generalized inter-module communications mechanism and an expression
of the philosophy which statesthat data and control connectives between
modules should be logically, rather than physically, established within
the communicating modules. This is achieved by establishing a data
structure called the Router Table. The Router Table contains the information
required to translate the lggical to the physical connection. The
mechanics of performing this translation are the responsibility of the
ROUTER software, not the user. The user of ROUTER refers to the entity
with which communication is desired by a logical unit number which
identifies a particular set of physical characteristics associated with
the logical device.

In our work we have discovered that this ability to establish logical,
rather than physical, data and control connectives is extremely useful
in the implementation of structured systems designs. In particular,
adherence to this philosophy makes it practical to extract a software

subsystem from an existing system and drop it into the architectural

153

154

framework, or "skeleton," of a new system. The new system, of course,
may fulfill a completely different set of functional requirements;

the inserted module merely fulfills a system level function required
in both. This is a fairly common practice in our firm, and since
re-invention of the wheel is never popular, no doubt it is also the
case in most other firms. The case example presented later in this
paper deals with a project where vast amounts of code were transferred
from an existing system to a new system.

It is our claim that adherence to such philosophies greatly
benefits the system development team, from cost estimator to applications
programmer.

It is impossible for the cost estimator to know all the ins and
outs, the 1ittle quirks and interfacing problems, which may be charac-
teristic of any given module which may be used in the new system. There
is, therefore, a great deal of uncertainty when the estimator tries to
assess the cost of installing the module in the environment of the new
system. The software tools reduce this uncertainty by a significant
percentage for the following reasons.

First, the estimator may be assured that the module was implemented
in accordance with the overall design philosophy with which he or she is
familiar. Second, the job estimator knows that the architecture of
the system need not be considered sacrosanct. The software tools allow
rapid modifications of the skeleton system, including the easy addition
of new tasks and the logical connectives between them and the rest of
the system. Thus, if for some reason the original architecture proves
to be undesirable, a new architecture can be designed and impliemented
without great delays in meeting program requirements. Our case example

describes a situation where this kind of problem did in fact occur,

and re-design of the skeleton system did in fact prove to be the
most efficient solution.

To a systems designer, the software tools provide a group of
constructs that can be used to Tay out the architectural level of the
system. The architectural configuration, or skeleton, of the system
is, of course, dependent on the application. The software tools allow
the designer to conveniently define the mechanisms by which information
arrives at the proper module in the proper format at the proper time.
The designer knows that because of the availability of the tools, the
design can be implemented in a clean fashion which truly represents
the structure laid out in the design process. The designer knows that
the skeleton system can be quickly constructed and provided to the
applications programmer as a test frame for the applications-specific
software.

This approach greatly diminishes debug and integration labor require-
ments and frees the applications programmer to concentrate entirely
on the application at hand. Initial debug efforts are performed in what
is growing into the operational environment of the applications-specific
software. Inter-task and module communications mechanisms do not have
to be constantly debugged each time a new task is installed.

These claims will be demonstrated by means of a case example, which

we shall now introduce.

HISTORICAL BACKGROUND

Our firm's experience with ROLM computers began in 1977. The first
system to be built by Melpar using ROLM computers was a multiprocessor

system, based on the ROLM 1650. This system was designed to control

155

156

and route information from a set of hardware devices to a remote installation.

Our second ROLM based system was established on a 1666 processor.
Its function was to perform diagnostics and fault localization on the

hardware set cuntrolled by System 1 while in a laboratory environment.

The third system was designed to meet a completely different set
of functional requirements. Unlike Systems 1 and 2, it was not
characterized by large amounts of user I/0, but was required to perform

a great deal of computations on data as it arrived,

By the time System 3 was delivered to its customer, System 2 had
performed in the field for quite some time and was regarded as a success.
Indeed, the customer noted the need for a similar system in a different
phase of its operations with System 1. System 4 was conceived to
supplement the ability of a pre-existihg system to control System 1,
as well as perform remote diagnostics and fault Tocalization while System
1 is deployed in its operational environment.

System 4 was, therefore, required to perform all the diagnostic
functions of System 2, as well as receive commands which it could trans-
late and route to System 1. No longer could operation be performed over
a cable. Communication between System 1 and System 4 was to be over a
remote 1ink.

Figure 1 illustrates the evolution of the software tools hierarchy
against the development of these four systems. The programming aids
and data structures were available to System 1 programmers only rather
Tate in the development, and were a by-product of the efforts of the-
programmers to produce a clean implementation. System 2 programmers
had the benefit of general utilities developed in the early stages of

that project such as memory management routines and linked 1ist access

packages. System 3 programmers developed the inter-task communications
tools as part of the effort to implement a clean ground-to-ground
communication scheme, and used them extensively. The general multi-
tasking structures were also developed during this project, but due to
their lateness were not extensively used.

System 4 was, therefore, the first project to have the advantage and

the availability of the complete hierarchy of software tools.

CASE EXAMPLE

As mentioned before, the customer saw the need to expand the
capabilites of System 2 and place that system in another operational
environment. The conversion of System 2 to meet these new functional
requirements provides the topic for this case example. The resulting
product of the conversion and upgrade effort shall be referred to as
System 4. It is important to note that the missions of the two systems
are similar, but with important differences.

Figure 2 is a much simplified block diagram of System 2. 1I/0
handlers, protocol handlers and the 1like are omitted because Tittle
difficulty was experienced in transforming these modules to meet System
4's requirements. Notice the blocks labeled METAI and OPTSK. The
interaction of these two task level modules is of particular importance
to this case example.

The METAI task is basically a command interpreter. It accepts
commands in the form of ASCII strings and produces binary coded packed
buffer structures called plexes. These packed buffer structures
are transmitted to the task labeled TEST EXEC, which interacts with the
task labeled SEQUENCER to prdvide synchronization and sequencing control

over the execution of the operational tasks.

157

OPTSK is a re-entrant task shroud which is created as needed by
SEQUENCER to execute the command currently being processed. In general,
any given number of OPTSK's may run at any given time. OPTSK performs
a vectored subroutine call to a given operational routine which executes
a given command. Again, we see the concept of separating the applications-
specific software, the operational routines, from the skeleton or
architectural layer of the system.

Note that OPTSK accesses a subroutine package which is also used
to support the operation of the command interpreter. This was done so
that looping capability could be provided; the OPTSK would extract
parameters from a disk file and fillin the proper areas of the command
block plex with appropriate parameters and execute the command once for
each parameter in the file. It is this feature which was to cause so
many problems in the development of System 4's skeleton.

At this point, it should be pointed out that the command inter-
preter was implemented in a manner which egregiously violated the
design philosophy indicated in previous portions of this paper. Physical,
rather than logical, data and control connectives were established
between the interpreter and the supporting package of buffer formatting
routines. Furthermore, use of packed buffer structure access tools
was not consistantly applied throughout these modules, making it
difficult to change the format of the output buffer header. Such a
change was required to meet the overhead requirements of the ROUTER.

System 4's original architecture is represented in Figure 3. This
is again a very much simplified block diagram which concentrates on the
interaction between the command interpreter and the operational task.

Note that the buffer formatting routines were to be resident in both
grounds.

158

It was decided to first tackle the problem of including the router
header space in the definition of the plex , and establish a single ground
system to test compatability with the rest of the system. This involved
modifications with existing software so that METAI would now communicate
with the Test Executive via means of the ROUTER facility, a fairly
simple configuration to arrange. This required about two weeks of effort,
aost of which was devoted to implementing the appropriate modifications
in the code of the interpreter.

It should be pointed out at this time that the programmer assigned
to the task of skeleton system construction was an entry-level employee
with no experience in real time systems. This indicates the confidence
of the project management in the tools, not necessarily in the employee.

This single ground system was delivered to the applications programmers
as an initial test frame and work on establishing the two ground skeletons
began.

The skeleton represented in Figure 3 was established in one man-
month of effort. Under most conditions, it worked well, but it soon
became apparent that the looping capability mentioned earlier had not
been achieved. Futher examination of the software showed that the buffer
formatting routines were utterly dependent upon data and code spaces
within the command interpreter.

The only alternatives were to rearrange the architecture of the
system, or commit the project to the task of performing major surgery
on the offending modules. After due consideration of the size and
complexity of the offending modules, it was decided to resort to the

former alternative.

159

160

Several skeletons were implemented over the next month in an
attempt to find an efficient way around the problem. At the end of
that period of time, the architecture of Figure 3 has been transformed
to that suggested by Figure 4. Note that the ground-to-ground split
was not established between METAI and the TEST EXEC as before;
it is the operational task that has become the point of system division.

The sequencing and synchronization software has been moved back
into the background system, which also hosts the command interpreter
METAI. Note that SEQUENCER now spawns the re-entrant task BOPTSK,
which was access to the buffer-formatting software associated with METAI.
BOPTSK is created at need by the sequencing software as before, and
causes the foreground system to create a corresponding FOPTSK. It is
FOPTSK that actually calls the operational level software which performs
the command function. Strictly speaking, BOPTSK is no longer a shroud.
It is rather an interface between the sequence control software and
the operational routines. Again, any number of BOPTSK/FOPTSK pairs may

exist at any given time; both tasks are fully re-entrant.

The differences between the systems represented by Figure 3 and
Figure 4 are striking. The astute reader will note that the number of
ground-to-ground transactions required to execute a given command has
increased from one to five. While this cannot be described as desirable,
it was nonetheless sufficient to meet our program requirements, and meet

them on cost and schedule.
Clearly, were it not for the ability to establish logical, rather

than physical, data and control connectives this task would have been

much more costly to accomplish. Also, the ability to separate

architectural level functions from applications-specific functions was

critical to the success of this endeavor.

A further point should be made to illustrate the power of these
tools. The period of time between the development of the design for
the new skeleton and its delivery to applications programmers as the
operational environment of their software was approximately two weeks.
The first week was consumed in the writing of the tasks to support the
foreground system and their installation in the system. This amounts
to about one thousand locations of code, distributed among five
tasks. This does not include rather minor modifications to existing
software. The debug effort took another week, and most of that effort
was performed by a programmer who was not involved in the design or

implementation of the new skeleton until that point.

This is not a trivial point. It shows that a programmer can step
in and debug a major and completely unfamiliar piece of software in a
very short period of time. This is due to the readability offered by
the code level macros and the structure attainable with the higher order
software tools. Programmers no longer have the need to debug the
mechanics of inter-task communications, task spawning and ground-to-
ground communications. They can now concentrate exclusively on the user

code, and better comprehend the role of that code in the system.

One final point before proceeding into a quantitative discussion

of the benefits we have realized through the use of these software tools.

It is important when constructing large systems to get the skeleton
system up quickly. Only in this way can applications programmers be
applied with the operational environment in which their software is to

reside. The first pass at debug and integration can be done in situ

161

162

rather than in some hastily contrived test frame which, after all, must

be considered throw-away code.

QUANTITATIVE DISCUSSIONS

One must ask, of course, how much of the benefits we perceive
are due to the fact that much code has been transported between these
systems. One might counter with the argument that software tools are
in part responsible for that capability, but that argument is not
sufficient to make our case. Figure 5 illustrates the growth in code
space of these systems, and the amount of new code generated to ful fill
new functional requirements. Each of these systems was significantly
larger than the previous system, and it might be added that each system
was progressively more complex both in terms of software architecture

and functional requirements.

Figure 6 is a graph of the calendar time allotted to each project.
Crew size variations between these projects were small. Note that each
system was allotted a progressively smaller period of time for design and

implementation. Thus, with each project the team was creating progressively

larger and more complicated systems in less calendar time.

Figure 7 is a graph of the labor required to establish the skeleton
in each system. Additional information, such as ROLM experience, code
space sizes and new code requirements, crew allocated to skeleton
implementation and design, and the amount of calendar time required to
establish the skeleton are presented. The labor cost to skeleton
diminished with each successive project. It should be noted that each
project had access to a successively higher level of software tools, most

of which had been developed in the previous project.

System 1 programmers had access to only the code level macros, and
only after about fifty percent of the labor had been expended. The first
Togical constructs were a by-product of that effort, and were highly
valued by the persornel working on that task. General systems utilities
were constructed and the code level macros improved in the interim period
between System 1 and System 2, with most of the real work being done in
the development of that system. While one would expect this to drive up
labor cost to construct the skeleton, we see that labor cost actually
dropped from 55 to 16 man-months. It should be pointed out that the

skeleton of System 2 is much more complicated than that of System 1.

The last two levels of the software hierarchy were developed during
System 3's design and implementation. Much of the effort went into
tools designed to facilitate ground-to-ground communications, especially
the ROUTER facility mentioned earlier. Towards the end of that project,
the general multi-tasking structures became available, but due to their
lateness were not fully used until System 4 development. Despite the
additional complexities of ground-to-ground communications and a totally
new set of functional requirements, System 3 skeleton labor costs dropped

to 9 man-months.

Note that crew sizes on the skeleton system effort have also dropped
steadily, meaning that a greater percentage of the team was available
immediately for the design and development of applications-specific soft-

ware.

This is dramatically reflected in Figure 8. The percentage of labor
cost expended on skeleton system implementation and design dropped from
50% in System 1 to 5% in System 4. This means that 95% of the labor

budget was available for the development of applications-specific code,
163

debug, and system integration. In systems of this size and complexity,
with large user I/0 requirements, this integration is, of course, a

time of hectic activity and great anxiety. It is very desirable to have
at hand the labor and time resources necessary to tackle this phase of

system development in great abundance.

The software tools are of assistance in this aspect of systems
development. Because the skeleton is up and running quite early in the
project, applications-specific software can be debugged in a good
approximation of the final operational software environment. Applications-
-specific software can be added to the skeleton as it is developed,
resulting in the early detection of most integration problems. In system
4, most integration problems were solved prior to the calendar date set

for the start of system integration.

As a result, our integration and validation processes were completed
with few problems, most of them very minor. Field testing revealed a

few minor problems which were patchable on site.

We have shown in our case example that one task out of more than
twenty permanent system tasks caused a major revision of the original
architectural level design of the system. It was one of the few tasks
in which programmers did not make extensive use of software tools as they
became available. It violated our overall design philosophy for
separation of applications-specific code from architecture support code,
and used physical rather than lggical data and control connectives to

communicate with supporting modules which served two purposes.

It is not remarkable that theoriginal job estimator and system
designer did not fully account for the problems of interfacing with this

module. It is a massive piece of software which fulfills a complicated
164

functional requirement. Rather, it is remarkable that the alternative
of changing the architecture to work around the problem was more cost-

effective than performing massive surgery on the offending module.

We conclude two things from this experience. First, that the use of
the software tool set must be uniform throughout the system development
team in order to ensure a high degree of transportability of software
components. Second, without the software tool set, the job
estimator would have been forced to concede to the customer that the

job was grossly under-bid. We would not have made our cost and schedule.

Our quantitative discussion shows that there is a strong basis
for saying that the software tool set dramatically impacts certain job
performance criteria. Labor costs for almost every phase of systems
development have dropped with each successive layer of the software

tools hierarchy.

Given these conclusions, one may state with some firmness that the
software tool set was fully worth the cost of developing and maintaining
it. The software tool set permits this team to perform more complicated
tasks in shoyter periods of time at Tower cost. As this greatly
increases our ability to compete with other firms in our market area,
the benefits of the software tools must be said to justify the expenditures

to develop them.

REFERENCE

1. Christofferson, M. J.: Real Time Software Tools and Methodologies.
Ruggedized Minicomputer Hardware and Software Topics - 1981, NASA
CP-2206, 1981. (Paper no. 8 of this compilation.)

165

General
Multitasking &

Process Communicatio SYSTEM

constructs 4

Task Create/Intercommunication r

Constructs SY§TEM

Generalized Utility Package SYSTEM
2
SYSTEM
1
Programming Language Constructs + ([
AVAILABILITY OF SOFTWARE TOOLS
Figure 1
TERMT TERMO = OPERATTONAL
ROUTINES

OPTSK
—

T

TEST
EXEC

METART —

SEQUENCER

l

DUFFER

FORMAT [~
PACKAGE

SYSTEM 2 ARCHITECTURE

Figure 2

166

FOREGROUND SYSTEM

BACKGROUND SYSTEM

— — — e —

| opeRATTIONAL
ROUTINES <
CONSOLE
INTERFACE
] 7
L7l aTe [
- € - K
ROUTER Comms ROUTER OPTS JJ
AN
r / /
METAT l %‘,;:fai
T TEST °
FFER —— SEQUENCER PACKAGE
%gam'r I EXEC
l——>—‘PMKAa£ I
|

ORIGINAL SYSTEM 4 ARCHITECTURE

Figure 3
BACKGROUND SYSTEM |
O PERATIONAL
I ROuTTNES <
]
CONSOLE
TNTERFACE
-~ 6T6 [~
E
H ROUTERA e ROUTER
s |
METAI y
[
{
BOPTSK | Fa3uP o FoPTSK
) S
' |
BUFFER TEST
F:":::J exee [°9 1)
P °4 FOREGROUND SYSTEM

FINAL SYSTEM 4 ARCHITECTURE

Figure 4

167

160

140
8
5 120
=
™
100
8
£ 80
w
LJ
g 60
o
40
20
CALENDAR
TIME ON
JOB

168

T TRANSPORTED/MODIFIED CODE
| | | |
SYSTEM SYSTEM SYSTEM SYSTEM
1 2 3 4y
TOTAL AND NEW CODE SPACE
Figure 5
18 T
10
8+
| ; % |
SYSTEM SYSTEM SYSTEM SYSTEM
1 2 3 4

JOB SCHEDULE CALENDAR COMPRESSION

Figure 6

56

40 L

LABOR
T0
SKELETON
30 T

iman-months)

20 L.

10 -

ROLM CODE CALENDAR
EXP TOTAL NEW TIME
0 72K 72K 18 mos.
18 mos 92 65 14 mos.
0 122 75 10 mos.
0 130 40 8 mos.

CREW

SIZE ON TIME TO
SKELET SKELETOR

6

9 mos.

4 mos.,

4,5 mos,

3 mos.

W T

% LABOR
ON
SKELETON3

10

oL

LABOR COST TO ACHIEVE SKELETON

Figure 7
Total Labor on
Labor Skeleton
108 55
84 17
70 9
56 3

X Labor
on Skeleton

51%

20%

13%

5%

B I i
3ys{em System System System
1 2 3 4

% Labor Expenditure on Skeleton

Figure 8

169

ROLM COMPUTERS IN THE FLIGHT TESTING OF THE FOKKER F29 AIRCRAFT

P. J. Manders
National Aerospace Laboratory
Amsterdam, The Netherlands

ABSTRACT

Since 1919, the National Aerospace Laboratory has been the central insti-
tute in The Netherlands for research performed for civil and military aeronautics
and spaceflight technology. The Netherlands Aircraft Factories, Fokker, is develop-
ing the Fokker F29 Aircraft (short-haul, twin-jet, second generation, high-bypass-
ratio engines; supercritical wing; advanced avionics (ARINC 700); autoland cat. III;
138-156 passengers). Flight tests will take place simultaneously in 1984 with
three prototypes. For the evaluation and certification flight trials with the
F29 prototypes, NLR, in close cooperation with Fokker, is responsible for the
design, development, installation, and operation of the test equipment (MRVS)
under contract with NIVR, the Netherlands Aerospace Agency.

The main requirement of the MRVS is to continuously record on an instrumen-
tation recorder data of up to 1500 parameters with a total sample rate of up
to 10 000 samples per second. After the flight the tapes will be processed on the
NLR-Fokker computer network.

In order to compress the evaluation and calibration time period, the follow-
ing additional requirements were set for two test systems:

(a) Recording of selected parameters, time-tagged on computer-compatible
tape (CCT)

(b) Recording of selected high-bandwidth signals and ad hoc parameters on
analog tape

(c) On-board presentation of calibrated parameter data, in engineering units,
in numerical as well as graphical form for:
-System check-out during pre-, in- and post-flight
*Quick-look analysis during in-flight

(d) Real-time presentation on the ground by telemetry for:
+Flight monitoring
-Take-off and landing measurements
*Noise measurements

(e) Limited data processing on board
(f) Data processing on the ground on the Fokker-NLR computer network

-Constant processing of the CCT and the analog tape, with selected
data

*Occasional processing of the instrumentation tape with all parameters
recorded during the entire flight

171

To meet these requirements a computerized F29 Flight Test System was designed,
the F29 Measurement, Recording, and Processing System (MRVS). This paper discusses
the development and characteristics of the on-board computer system (OBC) as a sub-
system of the MRVS,

INTRODUCTION

The National Aerospace Laboratory (HLR) is the central institute in The
Netherlands for research performed for both civil and military aeronautics and
space flight technology. The laboratory carries out theoretical and experimental
research in support of development projects of the aircraft industry. The NLR is
a non-profit foundation that obtains its financial resources mainly from work
under contract and from the government.

Fokker is developing a new aircraft, the Fokker F29. The NLR supports Fokker
in studies on wing technologies, airframe integration, engine noise reduction,
wind tunnel experiments, and in the evaluation of modern materials (fig. 1).

Under NLR responsibility, Fokker and NLR together are developing and realizing the
F29 flight test system.

FOKKER F29 AIRCRAFT

The Fokker F29 aircraft is a new generation of short-haul, twin-jet aircraft
for about 160 passengers, with second generation high-bypass-ratio engines, yield-
ing low noise production. The aircraft has supercritical wings, advanced avionics
systems including ARINC 700, and category III autoland equipment. Two of the three
prototypes that will be built contain a complete flight test system. The third
one contains a limited system,

Figure 2 is a diagram of the F29 evaluation and certification flight schedule.
In this diagram, the x axis shows the calendar time and the y axis shows -the
block hours spent in testing.

The first flight of prototype I is scheduled for the spring of 1984; the
first flight of prototype III will be six months later. The test flights of pro-
totypes I and II are almost simultaneous and will be completed in somewhat more
than one year (fig. 2).

FLIGHT TESTING, FUNCTIONS HISTORY, AND TRENDS
The primary functions of flight testing (fig. 3) are:

(1) Measurement of the aircraft parameters in which the designers and flight
test engineers are interested

(2) Recording of the measured parameters. Recording is necessary because
complete in-flight and real-time interpretation and processing of the
measured data is impossible. Recorded data will also be used for
statistics,

(3) On-board presentation of the measured data, in engineering units, for
quick-look analysis. This gives the flight-test engineer the option of
deciding during the flight whether to continue, change, or interrupt
the test flight.

172

(4) Data processing of the recorded raw data
(5) Analysis of the processed data

The trends in flight testing are to measure, record, and present more data,
i.e. more parameters at higher sample rates. On the other hand, there is a trend
toward shorter turn—-around times in data processing and analysis. The larger num-
ber of transducers and the shorter turn-around times required necessarily lead to
highly automated flight test systems.

In 1937 the NLR developed a so-called Automatic Observer, a combination of a
remote-controlled camera and an instrument panel for the intended flight test
(fig. 4a). The camera method provided on-board presentation and recording func-
tions. Parameters were presented in engineering units on the built-in instruments
while all the parameters were recorded on film. One to several pictures per sec-
ond were taken. The film was available for interpretation within several hours
after the flight. 1In the early years the interpretation was done manually, while
in later years digitizing instruments were used. At that time processing and
analysis were done manually and with the help of simple mechanical and electro-
mechanical calculators.

Figure 4b shows that nowadays, apart from a large number of parameters, the
data of modern avionics systems also have to be measured. The data acquisition
system multiplexes and digitizes the data and records the data on a magnetic tape.
The on-board computer enables presentation of the data on visual display units in
each desired format. On-board computers also enable data processing during and
shortly after test runs. After the flight, the data processing and analysis take
place on ground computer systems.

Figure 5 shows the history of the NLR-Fokker flight test systems from 1950
to the present, including the characteristics of the F27 Friendship, the F28
Fellowship, and the aircraft under development, the Fokker F29. The number of
parameters has increased from 70 to 1500 and the sample rates from 40 to 10 000
samples per second. The type of recording systems and the method of data pro-
cessing have also changed. In 1967 a ground computer was introduced, while nowa-
days airborne computers are used. For the first time a telemetry link was also
introduced.

F29 FLIGHT TEST SYSTEM

The F29 Flight Test System is called the Meet- Registratie- en Verwerkings
Systeem, MRVS, which means measurement, recording, and processing system. The
tasks to be performed by the MRVS are listed in figure 6. The main constituents
of flight testing are recording, presentation, and processing.

The requirements for recording are as follows:

(a) During the entire flight, data of all the measured and digitized para-
meters have to be recorded continuously on an instrumentation recorder

(b) During the various test runs of a flight, a subset of the measured para-

meters has to be selected, time—-tagged and recorded on a computer—com-—
patible tape

173

(c) Selected high~bandwidth signals and ad hoc parameters will be recorded
on an analog tape recorder

Presentation on board is required for several purposes, such as:
*The pre- and post-flight system check-out

-Monitoring of the digital data acquisition and recording systems during test
runs

«In-flight quick-look analysis
Real-time presentation on the ground is required for:
*Flight monitoring purposes
*Take-off and landing measurements
*Fly-over noise measurements
This real-time presentation on the ground is made possible by a telemetry link.

The third item, processing, requires limited data processing on board. For
instance, during the test runs a limit check on all parameters will be done and
results of these 1limit checks will be printed on a line printer. Between the test
runs it will be possible to read the recorded data from the computer-compatible
tape back into the on-board computer. The data can be processed using the in-
flight program, which is a simulated repetition of the test run, or the data can
be processed by special post-flight programs.

After the flight the computer-compatible tapes and the analog tapes will be
processed on the Fokker-NLR computer network. In case of an assembly failure or
in case of an incorrectly prepared test or equipment configuration with the effect
that the computer-compatible tapes do not contain the desired data, the instrumen-~
tation tape will be processed on the ground-based computer network, at the cost
of a much longer turn-around time.

Figure 7 shows a simplified block diagram of the F29 Measurement, Recording,
and Processing System (MRVS). The complete MRVS consists of 14 on-board sub-
systems and 24 subsystems on the ground. The upper half of figure 7 shows the
collection of on-board systems with inputs coming from the avionics systems and
the transducers. Apart from these, the on-board system receives a mag tape 6,
with the parameter selections and calibration data both necessary for each par-
ticular test run. The On-Board Computer System delivers, as an output, the com-
puter-compatible tape, B, for recording only during a test run. Other outputs
of the on-board systems are the digital tape, «, for recording during the entire
flight, the analog tape, VvV, and the telemetry link.

The lower part of figure 7 shows the MRVS subsystems on the ground, such as
the development and processing systems of NLR and Fokker, the Fokker Central
Computer, and the computerized Telemetry Ground Station. These subsystems deliver
the data required for analysis.

174

Figure 8 shows more detail of the on-board systems. Three data acquisition
systems can be distinguished:

(a) The Avionics Data Acquisition System, which delivers five digital serial
data streams to the continuous recorder

(b) The Digital Data Acquisition System, which generates eight digital serial
data streams to the same recorder

(c) The Analog Data Acquisition System for ad hoc parameters and high-band-
width signals, with its own analog tape recorder

Besides the five avionics channels and the eight digital channels, the continuous
recorder receives one channel from a Time Code Generator. These time data provide
synchronization and off-line search possibility for the recorded data. All the
data channels and the time data are also fed into the On-Board Computer System.

ON-BOARD COMPUTER SYSTEM

The On-Board Computer System, OBC (fig. 9), is mainly brought into the F29
Flight Test System to expedite a number of processes:

(a) The flight preparation phase can be shortened by partly automating the
pre-flight check-out of the on-board data acquisition and recording
systems.

(b) The qualification of success or failure of a test run in an early stage
is made possible by means of the computer and its visual display units,
on which selected and calibrated parameter data will be presented.

(c) During the data processing on the ground after the test runs, a time-
consuming tape-conversion action can be omitted. The OBC offers the
possibility of recording a selection of all the sampled parameters in
a standardized computer-compatible format. Usually this CCT tape (B)
will be processed instead of the so called continuous tape (Q).

Begsides the speeding-up possibilities, the OBC will be used for monitoring, check-
ing, and controlling of the on-board data acquisition systems.
OBC Tasks
Figure 10 presents the OBC tasks as follows:
(a) Recording of selected, non-calibrated, time-tagged parameters

(b) Presentation of selected calibrated parameter data in engineering units,
in numerical as well as in graphical form

(c) Limited real-time processing

The on-board computer functions are presented in figure 11; the two data high-
ways are easily recognized. As described before, the data are delivered by thir-
teen mutually unsynchronized data acquisition assemblies in a hardware program-
mable frame with a speed of about 500 to 2000 data words per second. The total

175

number of parameters was not supposed to exceed 1500 but, as usual with systems
under development, user requirements increased and at the moment stand at

1800 parameters. The total sample rate at the input side is limited to about
10 000 samples per second. Another indispensable input to the OBC is the Time
Code Generator which provides the time each millisecond.

Two important functions in the OBC are parameter selection and data calibra-
tion, which are test-run and configuration dependent. The information for selec-
tion and calibration will be delivered on the mag tape &, which will be generated
on the NLR ground computer network. During the test run these data are continuous-
ly and immediately accessible. The first action to be executed on the incoming
data is to identify the data words, which means obtaining the specific data ac-
quisition unit as well as the specific data word in the frame. The two character-
istics have to be added to the data word, a process called labeling. From there
on two processes are'distinguished, namely recording on computer-compatible tape
(via the right-hand data highway) and data presentation (via the left-hand data

highway) .

The presentation process contains more activities than simply the presenta-
tion of parameters on the two display units for operator and observer (figs. 12
and 13). Included in this process are:

*Analog outputs to a trace recorder and to analog displays

-Digital outputs to a Central Warning System and to digital displays
-ARINC output, among which are the tuning data for the DME Interrogator
*IEEE commands to a plotter, only for off-line purposes

-Messages and debriefing data to the line printer

A comparison of the two processes demonstrated that for the recording process,
every selected data word has to be time-tagged with the time given by the Time
Code Generator, and that data and time have to be recorded together. For the pre-
sentation process it is necessary for the most recent data word to be available
for each parameter at every moment. On request these data words will be read and

used in further activities.

After making a budget of the number of parameters to be delivered by these
two processes, it was found that in the recording process the worst case selec-
tion was about 500 parameters, with a total sample rate of about 3200 samples per
second. For the presentation process one can count on a limitation of about 100
parameters, with a total sample rate of 100 samples per second. The functions to
be executed by the recording process are, in principle, rather simple. Every
identified and labeled data word has to be checked to determine whether it belongs
to the CCT selection. If it does not, the data word will be ignored. If it does
belong, the time of the Time Code Generator will read, and the label, the data
word, and the related time word have to be transferred to the CCT tape RB.

The functions to be executed during the presentation process are presented
in the left-hand data highway of figure 11. In principle all the identified and
labeled data words have to be stored in a memory. Each parameter of each data ac-
guisition unit will have its own address in this memory, so that each time a new
data word from the same transducer over-writes the memory position of this ‘para-
meter. In this way a Most Recent Parameter Buffer, the MRPB, is created. The
printed circuit board to implement this buffer is shown in figure 14. Since the
added labels are unique for each parameter, the addresses of the MRPB can be

176

derived from the labels. After every update the time will also be written into the
MRPB. During execution of a test run the data of the Most Recent Parameter Buffer
will be read every two seconds and calibrated into engineering units, and will be
presented on the two display units.

OBC Design

In all, eight configurations were examined and evaluated with respect to cost,
expected development time, modularity, complexity, and throughput rate or computer
CPU load. Several of the configurations were derived from our first generation
data acquisition system with a ROLM 1601 computer. Some configurations with
two computers were considered, but apart from the cost aspect an extra effort
was expected in the required computer-to-computer data transmission., Figures 15,
16, and 17 show three of the examined configurations.

Figure 15 shows the first configuration, in which the functions, as far as
possible, are realized in software. Every data word of the thirteen data acquisi-
tion units causes an interrupt request to the computer, where each data word is
identified and labeled. The complete recording and presentation process is done
in software. A calculation demonstrated that counting with 10 000 interrupts perx
second would require a CPU load of more than 100%. This solution was therefore
useless. Realization of the identification and labeling actions, as well as the
CCT selection in hardware, would be an improvement, but the interrupt actions
would still result in an unsuitable duty cycle of about 70%.

In figure 16 a configuration is shown in which the recording and presentation
processes have been separated from beginning to end. For both processes, as much
as possible was realized in hardware. Realization of the CCT selection storage
was done by introducing a RAM, which before the test run would be filled with the
CCT selection data. It was necessary to create a hardware CCT data buffer, and
data transfer from the CCT buffer and the MRPB buffer was done by direct memory
access. Both buffers would be copied into the computer memory and would be access-
ible for CCT recording and data presentation. The CCT selection is fixed during
a test run, while VDU selections are changeable. The expected time needed for
input as well as output actions will take about 15% of the CPU load. Since direct
memory access was used, this was sSeen as a minimum estimate. As some parts of the
hardware are duplicated, this configuration is not the best one with respect to
cost, volume, and weight.

In phase III (fig. 17) the duplications in the hardware were removed. This
could only be done by introducing an internal bus system with a bus controller.
The software activities were the same as in phase II. After identification and
labeling, every data word was transferred via the internal bus. This configura-
tion is the solution which was ultimately chosen. The hardware was realized in
an NLR-ROLM Interface Unit, the ROLIN, a full ATR assembly.

Figure 18 presents a block diagram of the On-Board Computer System. The
upper half of this figure gives the functions incorporated in the ROLIN. Under-
neath the dashed line are the two ROLM Data Channel Controllers used for the CCT
and MRPB data transfer, and also the software functions. The ROLIN is suitable
for sixteen input interfaces with input and labeling circuits and various control
circuits.

177

For the internal ROLIN bus system the idea of the ROLM I/O bus was copied,
with sixteen data lines, six device code signals, data transfer signals, and the
interrupt control signals. This was a great help in the design of the input
interfaces and the bus controller. Each data word transport is initiated by means
of a hardware input request to the controller, which will only respond if the bus
is free, first by reading the related device code and then by reading the relative
label and data. The label is converted to an MRPB address by means of an EPROM,
and the data word is written into the MRPB. The label will be checked simulta-
neously against the contents of the CCT selection RAM, and if a match is found
the label, data, and time are transferred to the CCT buffer. This CCT buffer is
realized as a double buffer. After reading 256 parameters the contents of the
buffer will be transferred to the computer memory. In the meantime, the other half
of the CCT buffer can be filled by new parameters. Under software control the MRPB
and CCT buffer copies in the computer memory are accessible for presentation on
VDU and other peripherals and for recording on CCT. The CCT selection data in the
ROLIN-RAM can also be refreshed and renewed via direct memory access.

Figure 19 presents the On~-Board Computer hardware configuration. The compu-
ter is a ROLM 1664 computer with 64 K memory. The ROLM I/O Box contains the
various standardized peripheral interfaces. Two Interstate Plasma Display Units
serve as operators' terminal and observers' display. The CCT unit is a Miltope
Mag Tape Unit. The local OBC files for selection and calibration data and for
storage of pre-, in- and post-flight programs are available on the Miltope Floppy
Disk System, which consists of one master and three slave drivers. Connected to
two data channel controllers is the ROLIN with the CCT, MRPB, and bus control
circuits and the input interfaces. With the ROLIN Monitor Unit it is possible to
present the data of the internal bus system on digital displays for maintenance
purposes.

In figure 20 a diagram of the software is given. The software consists of
five programs:

(a) The Conversion Program converts the selection and calibration tape into
the local OBC file

(b) The Calibration Program will be used to calibrate the entire measure-
ment channel from transducer to digitized data

(c) The Flight Preparation Program is required for the more or less auto-
mated system check-out just before the flight

(d) The In-Flight Program controls all the recording and presentation
activities during the test run (fig. 21)

(e) The Post-Flight Programs contain various processing activities which
will be executed after the test run
CONCLUSION
In this paper it is demonstrated that only with the help of on-board compu-

ters is it possible to meet the growing requirements in flight testing. These
requirements are:

178

-More parameters to measure

*Higher sample rates

-Shorter turn-around times

*More effective on-board data presentation
*On-board processing

With a team of six men the On-Board Computer System is now being realized as
follows:

*Such technologies as hybrid circuits and flexible print wiring are being
incorporated into the ROLIN

-Concerning the software, work is proceeding on the technical design of the
In-Flight Program and the Conversion Program.

In the course of this year the computer, the ROLIN, and the software will be
integrated into a minimum system, and in 1982 the OBC system will be completed.

179

FOKKER

NETHERLANDS
AIRCRAFT

FACTORIES

NLR

NATIONAL
AEROSPACE
LABORATORY

DESIGN AND
MANUFACTURING
RESPONSIBILITY
F 29 AIRCRAFT

DESIGN, REALISATION
AND OPERATION OF
MRVS UNDER

NLR RESPONSIBILITY

STUDIES ON WING TECHNOLOGY
AIRFRAME INTEGRATION
ENGINE — NOISE REDUCTION

WINDTUNNEL EXPERIMENTS

EVALUATION OF MODERN MATERIALS

Figure 1

FLIGHT SCHEDULE

BLOCK HOURS

F 29 EVALUATION AND CERTIFICATION

/

TOTAL BLOCK HOURS
TO BASIC CERTIFICATION
IS 1400 HRS

1000 |~

NON-STD. FIELDS
CAT TII/AUTOLAND
CERTIFICATION:

NOISE 500

SYSTEMS ™ c=

FLIGHT HANDLING

GENERAL PERFORM.

TAKE~OFF /LANDING
EVALUATION:

SYSTEMS

PERFORMANCE

NOISE

HIGH SPEED

LOW SPEED

FLIGHT HANDLING

SHAKE DOWN & CAL.

/
/

/
/TOTAL HOURS

PROTO TYPES
/ 182

PROTO TYPE

ARCTIC TRIALS
ICING TRIALS

RELIABILITY

1 o o
[L L —) o L A 1) |) | . - b | —1 . o
3 6 12
Figure 2

180

FLIGHT TESTING

FUNCTIONS TRENDS
MEASUREMENT MORE DATA =

MORE PARAMETERS,
RECORDING

HIGHER SAMPLE
PRESENTATION |RATES

DATA PROCESSING | SHORTER

ANALYSIS

TIMES

TURN AROUND

Figure 3

ELIGHT TESTING, PHOTOGRAPHIC RECORDING1

MEASUREMENT
ON BOARD PRE

ANALYSIS

DATA PROCESSING

RECORDING

SENTATION

(a)

S i

[FLIGHT TESTING, THE MODERN WAY]

T

]
]
[}
1
[}
: DAS
)
t
1
t

MEASUREMEN

ON-BOARD
COMPUTER ON-BOARD
SYSTEM PRESENTATION

GROUND

RECORDING [SYSTEM

‘ pzzzzzzzzzzzzz(::zh-aCOMPUTER
AVIONICS%

T (b) ANALYSIS

Figure 4

DATA PROCESSING E

181

HISTORY OF NLR-FOKKER FLIGHT TEST SYSTEM

AIRCRAFT FRIENDSHIP FELLOWSHIP
F 27 F 28 F 29
PASSENGERS 40 - 56 60 -85 138-156
ENGINES TWIN — TURBOPROP. TWIN JET TWIN JET
TAKE-OFF WGT 22 000 kg 30 000 kg 60 000 kg
FIRST FLIGHT 1955 1967 1984
MEASUREMENT
NUMBERS OF PARAMETERS |70 50 110 1500
SAMPLES PER SECOND 40 50 550 10 000
RECORDING FILM MAG. TAPE FILM MAG. TAPE
PRESENTATION INSTRUMENTS INSTRUMENTS COMPUTER VDU
AND
VIA TELEMETRY
ON GROUND
DATA PROCESSING MANUAL COMPUTERIZED COMPUTERIZED
TURNAROUND TIME ONE DAY TILL 24 HOURS = 24 HOURS
SEVERAL DAYS

182

Figure 5

MRVS TASKS
RECORDING) ALL PARAMETERS (1500, 10.000s/s), DIGITAL,

ON INSTRUMENTATION RECORDER, DURING
ENTIRE FLIGHT

. SELECTED PARAMETERS, TIMETAGGED, ON
COMPUTER COMPATIBLE TAPE (CCT)

) SELECTED HIGH — BANDWIDTH SIGNALS
AND AD HOC PARAMETERS ON ANALOG TAPE

PRESENTATION

ON BOARD

GROUND

CALIBRATED IN ENGINEERING UNITS,
NUMERICAL AND GRAPHICAL , FOR

. SYSTEM CHECK OUT PRE — IN — POST FLIGHT
. QUICKLOOK ANALYSIS, IN FLIGHT

BY TELEMETRY, FOR

. TAKE OFF AND LANDING MEASUREMENTS
. NOISE MEASUREMENTS

PROCESSING
ON BOARD

GROUND

LIMITED DATA PROCESSING
ON FOKKER - NL R COMPUTER NETWORK

. USUALLY CCT WITH SELECTED DATA
AND ANALOG TAPE
. OCCASIONALLY INSTRUMENTATION TAPE

Figure 6

F29-MRVS

DATA ACQUISITION,
RECORDING AND PROCESSING
SYSTEMS

4

AVIONICS DATA 2222222

TRANSDUCERS

[# 4
SEL DIGITAL CCT ANALOG
CAL
NLR FOKKER TELEMETRY
DEVELOPMENT DEVELOPMENT GROUND
PROCESSING PROCESSING STATION
SYSTEM SYSTEM

FOKKER
CENTRAL COMPUTER

' ANALYSIS AND AIRCRAFT FLIGHT MANUAL)

Figure 7

F29-MRVS-0ON BOARD SYSTEMS

AVIONICS DATA

>y AV IONICS
2)
7 DAS % L
: % X
DIGITAL
DAS

()

()

7
TRANS-| N TIME CODE Lol A NN
DUCERS g GENERATOR [% — 1 NN B
f '
2
Sres ANALOG ON-BOARD
4
Z COMPUTER SYSTEM
2| v s 0BC
TELEMETRY —1_
Figure 8

2,5-cm, 2194-m
14-TRACK
DIGITAL TAPE

CCT
DATA

SELECTIONS
CALIBRATIONS

ANALOG
TAPE

183

ON-BOARD COMPUTER SYSTEM

Figure 9

184

0BC TASKS

SELECTED, NON-CALIBRATED,

IN-, POST-FLIGHT

RECORDING

TIMETAGGED PARAMETERS
PRESENTATION SELECTED PARAMETERS, CALIBRATED,

IN ENGINEEREING UNITS, NUMERICAL

AND GRAPHICAL,FOR :

. SYSTEM CHECK-OUT,PRE-, IN—, POST-FLIGHT

. QUICK-LOOK ANALYSIS,IN—, POST-FLIGHT
PROCESSING LIMITED DATAPROCESSING I

Figure 10
{ OBC FUNCTIONS |
ASYNCHRONOUS
DATA FROM 13
DAU'S TIME
1500 PARAMETERS
10000 5 / sac 1 I

I DATA INDENTIFICATION AND
LBEING

a

STORAGE INTO
DATA BUFFER

MOST RECENT
PARAMETER
BUFFER

SELECTION fo- —7-===-[A-—=--
II
! 7

CALIBRATION }= -/

500 PARAMETERS
3200 samples / sec

100 PARAMETERS
100 samples / sec

ANALOG
DISPLAYS
TRACE gzgRIATORS
RECORDER MINAL
WARNING OBSERVEPS
SYSTEM VDU
DIGITAL
DISPLAYS

DME 10s /3ec HARDCOPY
INTERROGATOR

PLOTTER

Figure 11

185

*
*
+
L
*
#
L
&
*
*
&
#
*
&
L
¢
¢
L
L
&
L
L

PLASMA DISPLAY
OPERATORS PAGE

Figure 12

186

5 g

PENTMENTIL. ~ TS TCARD

PLASMA DISPLAY
OBSERVERS PAGE

Figure 13

187

PCB MOST RECENT PARAMETER BUFFER

Figure 14

188

0OBC DESIGN

PHASE 1 SIMPLE HARDWARE, ALL FUNCTIONS IN SOFTWARE

- CCT
IDENT. SELECTION /@

TIMETAGGING

l\%;

| .
I =
= %N. =
- B -
= DATA SEL
- [] -
I /'.‘n = LABEL BUFFER | cAL —»vou
100 % CP U LOAD FOR INPUT , IMPOSSIBLE
Figure 15
OBC DESIGN
PHASE II MORE FUNCTIONS IN HARDWARE
1 SEL
= ' TIMETAGGING |M B)cet
= é LABEL DATA BUFFER |A CCTB
h—»%; SEL
= D MRPB |-
= IDENT.
= 2 DATA BUFFER |M CAL
= é LABEL A
13 REQUEST

FIXED FUNCTIONS IN HARDWARE
ALTERABLE FUNCTIONS IN SOF TWARE
HIGH HARDWARE COST (DUPLICATION OF 1/0 CIRCUITS)

Figure 16

189

OBC DESIGN

PHASE [COMBINING | /0, IDENT AND LABELING
INTRODUCING INTERNAL BUSSYSTEM

SEL
1= SELECTION |p B)ccT
= IDENT. |g| TIMETAGGING | cCTB
- % DATA BUFFER_ |A
- D
- 0 weee |5| oama BUFFER |M MRPB |+ 2E-
13—é A

REQUEST
PREPROCESSOR WITH SELECTION, TIMETAGGING AND DATABUFFERS.
NUMBER OF 1 /0 CIRCUITS MINIMIZED

Figure 17

[NLR-ROLM INTERFACE ROLINI
[TRANSDUCER ~ AVIONICS DATA] [Tce |

RECOGNISING EACH] [
SAMPLE , LABELING,

REQUEST INPUT

CONTROL BUS

DATA BUS

conTroL-
CONVERT LER
LABEL
MR PB] TIME_ {pousLE i
INTO DATA

P CABEL cer
MRPB ADDRESS SELECTION

-—1 SELECTION

1

AT

SEL. CAL.
FILE

VDU 1 LPT
voun DISPLAYS
ETC.

Figure 18

190

| oBc HaRDWARE coNFiGURATION]

ROLM ROLM 1664 | MEMORY
CONTROLPANEL cPy 6dk

ROLM 1. /0 BCX
REP

EXP
COmB8 1.0

FDU
MTU contr,
FDU conte

LPT int.

BIC 70
FLR DACT
NLR DAC Z
DME [NLRDACZ ___]
INTERROGATOR |' NLR ARINC-O0UT

ROLIN
MRP
[TCT
CONTR
MONITOR 1.
TCG TCG 1

}——] TRIG - PCM 1 _

AVIONICS int.

“=1 AVIONICS

DAS

(RO RONITOR]

m o

Figure 19

e

DCC 1

Dec 2 OBSERVERS
Bee 3] DISPLAY
DIGL O

QPERATORS
TERMINAL

]

| 0BC SOFTWARE ASSEMBLIES

CALIBRATION AND ROLIN CALIBRATION RECORDED
SELECTION DATA DATA SELECTION DATA
FROM CDB ® @ 0BC FILE
INPUT)
CONVERSION 1 CALIBRATION o FLIGHT IN-FLIGHT POST-FLIGHT
PROGRAM PROGRAM PREPARATION PROGRAM PROGRAM
PROGRAM
OUTPUT T

CALIBRATION
SELECTION

3/ oscFuE

DATA FOR COB Q

Figure 20

191

192

[IN FLIGHT PROGRAM FUNCTIONS |

PAGE SELEC ALIBRATIO|
TABLES ATA DATA

N FUNCTION CCT SELECTION cCcT
KEYS TABLES DAT

SELECTION

CALIBRATION
CONVERSION

DATA IN
ASC II

1/ 0 PROCESSOR

CONTROL
ROUTINE

cCcT
ROUTINE

LIMIT CHECK
CONVERSION

DATA IN
ASCI

I/ 0 PROCESSOR

ybu
PRESENTATION

1

17—
LPT CCT SELECTION DATA ON
HARDCOPY, TABLE INRAM CCT

Figure 21

FAULT ISOLATION TECHNIQUES

Al Dumas
Westinghouse
Baltimore, Maryland

ABSTRACT

There are four items which a user must take into consideration in the area of
user maintenance of computer equipment:

(1) Establishing a philosophy

(2) Capitalizing maintenance levels
(3) Integrating with company policy
(4) Implementing a program

Because down time is expensive, users should focus on reducing it with a quick
react approach to a system fault, or what appears to the programmer to be a system
fault. This paper briefly describes three major areas that should be considered in
the development of an overall maintenance scheme.

AREAS OF CONCERN
There are three areas of concern related to fault isolation techniques:

(1) The programmer (or user)
(2) Your company and its policies
(3) ROLM, the manufacturer of the equipment

Regarding the first area mentioned, service personnel often can diagnose actual
machine problems as well as programmer problems. By using short sections of machine
language coding the user can almost always at least differentiate between machine
problems and programmer problems. It would be helpful to require the programmer to
indicate in a log book the machine condition at the time of failure, in order to try
to determine a sequence of events that may help the next time a failure occurs.

One example of this is the position of the floppy disk selector, where there is more
than one floppy drive in the system. The last programmer or operator may have left
Unit A in "Select position 1" and Unit B in "Select position 0". When the next user
tries to use Unit A as "DFO", nothing happens; the programmer or operator gets no
input from that device since the select switch is improperly set up.

The second area of interest is your company's policies regarding repair of
equipment. Some possible policies include:

(a) Calling the local service representative, if the machine is under a
service contract

(b) Calling the lead programmer to determine whether it appeared to be a

machine failure or a programming problem (i.e. a new programmer might not
know system capability)

193

(c) Having knowledgeable people on board to service equipment

(d) stocking a limited number of spares as suggested by ROLM. The user must
determine to what level spares should be stocked (i.e. boards, chassis,
power supply, etc.)

(e) Establishing a procedure according to the company's needs:

(1) This type of equipment must always be available, therefore redundancy
must be either built in or available (i.e. a second system)

(2) All items that can be replaced in the field shall be stocked as spares,
as suggested by ROLM, and the company will have qualified technicians

(3) The company wants service upon request; it does not want to maintain
spares or qualified technicians

(4) Down time is not a major concern; the company will return system or
suspected unit for repair

Some of the company policies mentioned affect all users and therefore are offered
as guidelines. Users who are relatively new at computer systems maintenance may not
be aware of all the pitfalls associated with computers.

Because down time can be more costly to a company than service costs or spares,
the following guidelines are offered as a way of determining the user's relative
costs.

(1) Limited operation. Consider whether this operation can continue without
certain components, such as a line printer or a disk.

(b) Limited capabilities. For instance, the system will operate if loaded from
floppy diskettes, but the magnetic tape is not available because of an
I/0 board failure, and the terminal causes interrupts during extremely
long listings and must output everything to the line printer.

(¢) Minimum down time allowed. The system or any part of the system can never
be down for more than one hour because other people are affected.

(d) Down time cost factor. For every hour the system is down it puts six
people out of work at $5.00 per hour = $30.00 per hour.

(e) Machine use. This machine must be available 8 hours a day, 5 days a
week. This means the system is available for maintenance 16 hours a day
X 5 days a week = 80 hours + 48 hours on weekends = 128 hours of allowable
down time.

The final area of concern in establishing an overall maintenance scheme is
determining what information the equipment manufacturer can provide which would be
helpful in isolating machine-related problems. Some manufacturers supply users with
a flow diagram of fault isolation procedures to the board level (fig. 1). A user's
guide for fault isolation, similar to the operator's handbook used by programmers,
would also be helpful. Such a manual might include:

194

(a) A section on manual loading of programs (i.e. to test the real-time clock
when diagnostics cannot be loaded via any other media)

(b) A section on diagnostic program instructions (i.e. place tape on PTR, set
data switch to all ones, press START. Tape loads, set data switch to 52,
depress START)

(c) A section on type of HALT as indicated by display panel

(d) Recommended repair procedure

Users can help one another by exchanging information on fault isolation tech-
niques which have been developed. This exchange can be implemented as a portion of
annual users group meetings, such as this one, with the user and manufacturer diag-
nostic techniques documented in a conference proceedings. An alternate technique
might be for the manufacturer to collect diagnostic techniques contributed by many
users and publish the resulting collection in a group newsletter. The specific
procedure used to exchange information is not critical; the important thing is to
actually share these valuable experiences.

195

196

ENTER
02 25 81

ENTER
2 25 51

ENTER

=

1ST/A/E/S/)

™~

L.P.COME
~ ON

PRINTS
DAY MON.YR.
STOPS

P.
PRINTS LIS

.

PLACE L.P.
ON LINE

REPLACE
LINE PRINT.

REPLACE
1/0 BOARD

LOAD DISK-
ITTE THAT
CONTAINS

N OPER. SYS

POYWER UP
SYSTEM & ALT
PERTPHERALS

\i
DATA SW.=37

RESET , EXAMINE
DEPOSIT,START
DN CTL. PNL

DISPLAY =

DEPRESS
RETURN

Cégg_bd

CHECK
CHAN., SEL.

T

DEPRESS
IPL
SWITCH

M/D/Y

Y

Figure 1

EXTENDED MEMORY MANAGEMENT UNDER RTOS
USING FORTRAN

Mark'P1ummer
GTE Sylvania
Mountain View, California

ABSTRACT

Direct user access of extended memory in the ROLM 1666 is not supported under
RTOS. Extended memory pages must be mapped to a window in the user program before
they can be accessed. The amount of extended memory usable at any moment is thus
Timited by the size of the window. A Memory Management Module (MMM) has been developed
which, despite this limitation, manages dynamic memory allocation with a minimum win-
dow size. The MMM is designed to support large data buffers that are accessed infre-
quently by multitask user programs. It is useful in systems where data buffers spend
large amounts of time on I/0 or communication queues. Use of the MMM makes extended
memory manipulations transparent to FORTRAN user programs.

1.0 INTRODUCTION

This paper presents a technique for extended memory management in ROLM 1666 com-
puters using FORTRAN. A general software system is described for which the technique
can be ideally applied. How the memory manager interfaces with the system is described
in detail. The protocols by which the manager is invoked are presented, as well as
the methods used by the manager. Several problems associated with the technique are
discussed.

Terms used throughout this paper are defined as follows:

A system is composed of many segments (tasks), both independent and
related, called modules. The memory manager is itself a module. Those
modules which invoke the manager will be called "user modules" (Fig. 1).
Logical address space is the amount of computer memory addressable by a
user module; in the case of the ROLM 1666 this is 64K words. Extended
memory is that memory which exceeds the logical address space (Fig. 2).

A "window" is an area of addressable space which can be mapped to an area in
extended memoryv. RMX/RTOS performs mapping on 1lK-word pages, hence windows
must be in sizes which are multiples of a page. Any page in addressable
space can be defined as a window and mapped to any page in extended mem-
ory. The page to which a window is mapped is said to be "user accessable"

197

(Fig. 2). The memory manager described in this paper uses the term
"buffer" as any contiguous section of memory which it is managing.
An "active" buffer is one which is user accessable, A "deactive"
buffer is one which is not presently user accessable (Fig. 2).

2.0 SYSTEM SCENARIO

It is not uncommon for a FORTRAN software system to process data
occupying large amounts of memory during each execution cycle. If the program
itself is large it may be necessary to store most of the data in extended memory.
Under RMX/RTOS all extended memory references must be made to a window in
logical address space, which is mapped to extended memory. The amount of
extended memory accessable at one time is therefore limited by the size of the
window. This also holds under RMX/RDOS for all operations except disk 1/0.

Frequently in such a system only a small amount of the data must be
accessed at any given moment. Often there are several independent system
modules which must access the data, The modules may be driven by external
events, such as inter-computer I1/0, disk I/0, and other peripheral deyice I/0.
They are thus accessing and processing the data asynchronously. Most modules
only need to acquire or set a specific element of a data buffer, using it for
a very short period. It is then passed to another module or I/0 deyice, often
on a communications queue (Fig. 3). When so transmitted it is not necessary
for the data buffer to be accessable. A window for extended memory therefore
need only be as large as the maximum amount of data being accessed at one
time. Due to the staggered timing of the modules and the use of queues, this
is generally only several pages of memory. A data buffer is mapped into this
window only when it is immediately needed. At all other times it is mapped
into extended memory, freeing the window for other users. For example, in a
system which processes digital audio data and can receive a burst of 20 1K
word buffers of input data in approximately 100 msec, a window size of only

5 pages 1is required.

198

3.0 THE MEMORY MANAGEMENT MODULE (MMM)

A Memory Management Module has been implemented which allows multitask
FORTRAN users of data buffers to access them only when needed, while keeping

the actual mapping procedures transparent. The MMM can support data buffers
whose sizes are any multiple (fractional or integral) of a page. The present
implementation supports two sizes: % page and 1 page. These sizes were
chosen for uniformity with system data and disk sector size.

The RMX/RTOS window area used by the MMM is declared as a COMMON array
titled "BUFFER", which is accessable by all system modules. The array BUFFER
is dimensioned in multiples of a page, and must begin on a page boundary for
compatibility with RTOS. The MMM supplies users with indices into this array.l
The index locates the beginning of the supp1ied buffer in the window (Fig. 4).

The MMM indentifies data buffers by a unique key called the buffer
"name" (Fig. 5). The buffer name is supplied to users by the MMM upon request
for a buffer. Since the index of each buffer will change between activations,
the name must be maintained by users and supplied to the MMM for all other
buffer operations. No other means of identifying a buffer exists,

3.1 Initialization

Preceding any user requests to the MMM, initialization must be
performed by the following call:

CALL MEMIT

This call initializes a table internal to the MMM which is the heart
of the module (Fig. 6). The table contains an entry for each 1K-word page
in both the window and extended memory. Associated with each table entry
is the logical page number in the window to which the page is mapped if the
page is active, or a flag to indicate that the page is deactive, The buffer
name is an index into this table, plus an index into the page if a %-page
buffer (Fig. 5). An assigned/unassigned status flag is also maintained in the
table for each buffer in the page. During initialization the maximum number
of pages in the window are flagged as being active and all others are deactive.

199

200

3.2 Get a Buffer

A user module which wishes to acquire a data buffer must execute the

following call:

CALL MEMGET(buffer size, buffer index, buffer name,
error return)

The buffer size requested must be in the range 1 to 1024 words, although the
returned buffer is either 256 or 1024 words. The buffer name must be
maintained for future MMM operations. The buffer may be transmitted to another
module, via a direct call or communications queue, by passing the name. If
the buffer is to be placed on a queue the user module should deactivate it.

The buffer supplied to the user by the MMM is located in

BUFFER (buffer index) to BUFFER(buffer index '+
returned buffer size -1)

(Fig. 4).

Upon receiving this call the MMM searches its internal table for an
unassigned buffer which is mapped into the window. If none exists the error
return is taken, informing the caller that no buffer is available, Otherwise
the appropriate buffer name and buffer index are calculated and returned,

The MMM buffer allocation scheme must attempt to reduce fragmentation within
memory. This is presently done by allocating 1-page buffers from one end of
the table and %-page buffers from the other.

3.3 Release a Buffer

A user module which has completed all processing of a data buffer can
release it for re-use with the following call:
CALL MEMREL(buffer name)

This call causes the MMM to flag its table entry for the specified
buffer as unassigned, regardless of the active/deactive status of the buffer.
An additional check is made to flag the entire page as unassigned if the
buffer released was the last in a page of %-page buffers.

3.4 Deactivate a Buffer

A user module which wishes to temporarily release access to a buffer
does so with the following call:

CALL MEMDACT(buffer name)

The buffer index held by the user after this call is no longer valid for that
buffer and must not be used.

This call causes the MMM to search its table for an unassigned page in
extended memory (a free, deactive page). If one is found, it is swapped with
the supplied buffer. The free page thus becomes active and available for
future get-buffer operations. The supplied page becomes deactive. Specifically,
the MMM interchanges the table entry of the free page with the one specified
by the input buffer name. After thus flagging the map in its table, an RTOS
call is executed to perform the actual operation, This puts the new,
unassigned page into the window. If the buffer deactivated is of size %
page, the page containing it is mapped only if there are no active %-page
buffers remaining in that page.

3.5 Activate a Buffer

A user module which needs to access a buffer that has been deactivated
must first execute the following call:

CALL MEMACT(buffer index, buffer name, error return)

The buffer name is supplied by the user module and the buffer index of the
activated buffer is returned by the MMM, The buffer is used in the same
manner as after a get operation,

Similiar to a get operation, the MMM searches its intermal table for
an unassigned and active page. If one is not found the error return is
executed, informing the caller that there is no space for actiyation.
Otherwise the appropriate table entries are interchanged and the RTOS map is
performed. If the buffer being activated is a %-page buffer, the page must

201

b

be mapped regardless of the deactive or unassigned status of the remaining
% -page buffers in the page.

The MMM operates in a multitask environment so it must be reentrant.
This requires its internal table to be protected by semaphore locks. The
RTOS intertask communication mechanism of XMT-REC can be used very effectively
for this purpose. However, the present implementation of the MMM must operate
in the interrupt handler environment as well as the task environment. Because
of this, semaphore Tocks in the MMM are implemented by a test and set
capability performed on lock Tocations in the internal table (Fig. 6). Only
MEMGET and MEMREL calls can be issued from an interrupt handler, since the
RTOS mapping calls in MEMDACT and MEMACT cannot.

4.0 LIMITATIONS

Due to the size of the system program the size of the window may be
smaller than that required during peak buffer usage. This will affect get
and activate operations, A feasible solution is a utility module which
executes a delay and retry whenever a buffer is unavailable. The delay allows
other modules to finish processing and release buffers, freeing the necessary
window space.

Since user modules access their buffers through a COMMON array there
is no way of insuring that they do not access other buffers. Care must be
taken when programming modules which use the data buffers to prevent accessing
out of bounds.

A major difficulty encountered in using the MMM in a large system
is insuring that a buffer is released only once, The possibility exists
that two separate modules may receive the name of a buffer containing a data
block which they must both process. The system design must prevent both
modules from releasing the buffer. If not, the second module to release the buffer
would most Tikely be incorrectly releasing the buffer after allocation to an
entirely different data block. A minimal but simple check for this error is
to set the name of a released buffer to an invalid value. This insures that

202

if a buffer released by one routine is inadvertently transmitted to another,
the invalid name will generate an error return. A more complete solution is
to maintain a count of the number of times a buffer page has been allocated
and include that count in the name (Fig. 7). This would make the buffer name
unique for each data block to which it is assigned (up to the rollover of the
counter), insuring only one release of a data block buffer per assignment.

5.0 SUMMARY

The MMM was designed for a specific system but fits the requirements
of many real time, molti-task data processing environments. It is appro-
priate wherever large amounts of core-resident data must be handled and
routed, but infrequently accessed. It is easy to interface with from FORTRAN.
Due to the minimum window size required, it is especially useful in systems
which have a limited area in addressable space for data buffers.

REFERENCE
1. Dowell, R.: Efficient Memory Usage on Mini-Computers Using FORTRAN.

COMPCON 1980, Proc. of 20th IEEE Computer Society International
Conf., 1980, pp. 70-72.

203

16~bit address

—>

204

l

SYSTEM

J

J

USER
MODULE
#3

‘//// identifier
////;Luffer

PHYSICAL
MEMORY

user accessable

(active huffer)

ey

(deactive buffer)

Y

USER USER
MODULE MODULE
. - - —
#1 #2
MEMORY
MANAGEMENT
MODULE
(MMM)
RTOS
MAPPING
Figure 1
MAP RTOS REMAP
logical address
space
window 64
63
1
L pages

Figure 2

64
63

extended
memory

STORAGE

INPUT QUEUE 4 NETWORK QUEUE PROCESSING QUEUE DISK i
SWITCHING I
RETRIEVAL
DISK QUEUE PROCESSING QUEUE NETWORK { QUEUE ouUTPUT
- SWITCHING j
Figure 3

USER MODULE Mt
[
N*1024
2949
buffer __ = e — — o~ 2pas
index small - — . - -
buffer
N 3
1925,
large 1p24
buffer [—— — - — - — 2
_______ 1
page —» 1 Lo t
boundary 1 page
array numbers
indices

COMMON BUFFER (N*1924) MEMORY

N = number of pages
in window

Pigure 4
205

MMM BUFFER NAME

0.12 7809 15
PAGE NUMBER SIZE OF BUFFER
(index into buffer AND INDEX INTO
allocation table) PAGE

Figure 5

MMM BUFFER ALLOCATION TABLE

Page #: 1

‘\W

N
A 4 A4
% page
buffer usage:)
free L wi ndOW pagiezse .
active page # or
deactive deactive small buffers

flag large buffers

N = number of pages in window
+ number of pages in extended memory used for buffers

Figure 6

206

'page lock' location:
table entry being used
table entry not being used

IMPROVED MMM BUFFER NAME

0r 2 67 9 10 15
PAGE SIZE OF BUFFER USE
NUMBER BUFFER COUNTER

(unique for each
assignment)

Figure 7

207

DESCRIPTION OF A DUAL FAIL-OPERATIONAL REDUNDANT STRAPDOWN

INERTIAL MEASUREMENT UNIT FOR INTEGRATED AVIONICS SYSTEMS RESEARCH

W. H. Bryant and F. R. Morrell

NASA Langley Research Center

Flight Electronics Division
Hampton, Virginia 23665

Abstract

The general trend in modern aircraft is
toward integrated, all-digital avionics
systems. Langley Research Center of NASA is
developing a research oriented dual fail-
operational redundant strapdown inertial
measurement unit which will be used to study
such systems-as a primary source of navigation,
guidance, flight control,and display data for
integrated avionics systems. This developmental
system will be used to examine failure detection
and isolation algorithms, and determine optimum
failure thresholds at the sensor level, given
mission constraints. The major emphasis is to
ensure highly reliable data for flight control
while minimizing false or missed alarms.

The redundant strapdown inertial measure-
ment unit, which includes a skewed array of four
two-degree-of-freedom gyros and accelerometers,
is coupled through instrument electronics to two
flight computers; this will provide a means to
test and evaluate dual fail-operational concepts
of inertial measurement units. The inertial
sensors and compensation electronics form two
separable non-redundant blocks to enable
investigation of variable sensor location on
the failure detection and isolation problem.

It is intended to demonstrate by means of
Taboratory and flight tests that a low-cost dual
fail-operational strapdown system of sensors is
capable of providing an improved integrated
avionics function. This requires substantial
visibility via the flight computers to the
redundant strapdown inertial measurement unit
system operation.

1. Introduction

Because of recent advances in computer
technology, modern aircraft systems are nearing
an all-digital status. Many analog systems have
been replaced by digital systems which bear
their own digital computer and interface
requirements. The progress in digital computer
technology has also spurred advancement in
strapdown inertial sensors because significant
cost savings result from integrated avionics
systems for flight controls, navigation, and
display.l

As aircraft incorporate advanced energy
efficient design, they will become more reliant
upon these integrated avionics systems to the
point that selected avionics components/systems
may become flight critical. The most obvious
candidates are those systems which provide the
aircraft stability, from sensors through actu-
ators. These systems must have the inherent

capability to provide augmented stability without
adding to pilot workload by requiring that the
pilot monitor sensor operations and switch out
failed units.

Langley Research Center of NASA is devel-
oping an experimental redundant strapdown
inertial measurement unit (RSDIMU) as a link to
satisfy safety and reliability considerations in
the integrated avionics concept.Z,3 The unit
includes four two-degree-of-freedom (TDOF) tuned
rotor gyros, and four TDOF accelerometers in a
skewed and separable semi-octahedral array.
These sensors are coupled to four microprocessors
which compensate sensor errors. These micro-
processors are interfaced with two flight com-
puters which process failure detection,
isolation, redundancy management,and general
flight control/navigation algorithms. Since the
RSDIMU is a developmental unit, it is imperative
that the flight computers provide special
visibility and facility in algorithm modifi-
cation.

2. Description of the RSDIMU

The redundant strapdown inertial measurement
unit has a complement of instruments mounted in a
semi-octahedral configuration (Fig. 1) such that
fail-op/fail-op capability is provided. When
coupled with flight computers, a self-contained,
inertial navigation system results.2 The spin-
axes of the TDOF gyros and the pendulous axes of
the TDOF accelerometers (S;j) are normal to the
faces of the semi-octahedron as shown in Fig. 2.
The measurement axes of the dgyros and accelero-
meters (Xi,Yi) are nominally collinear and are
oriented such that the bisector of the angle
between the sensitive axes is perpendicular to
the baseline of the semi-octahedron (Fig. 3).
The IMU sensor head is separable consisting of
two self-contained non-redundant systems A and B
as shown in Fig. 4. This design provides the
flexibility required when investigating inertial
sensors separation effects on the performance of
the dual fail-operational system in the flight
environment.

The instrument clusters use self-calibration
at each system startup to compute gyro and
accelerometer long-term instabilities. Based on
known Earth-rate and gravity for two positions of
the individual sensor heads, gyro and
accelerometer bias, gyro g-sensitive and
g-insensitive terms can be determined. Each
instrument cluster contains two gyros, two
accelerometers, and two calibration heads. The
mounting blocks each have a precision surface and
pins for accurate realignment after separation.
The instrument electronics assemblies- contain a
microprocessor for each gyro-accelerometer pair,

209

gyro and accelerometer torquing electronics,
analog-to-digital converters, and interface
capability to transfer sensor information to
flight computers. Each instrument electronics
assembly is housed in an ATR box. Housed in a
separate ATR box are the power conditioning
system, 28 volt batteries and a charger to main-
tain the system operation for periods up to 20
seconds during power transfers. The RSDIMU
sends gyro and accelerometer data, resolved
along the ideal instrument-fixed coordinate
reference frame, to the external flight com-
puters. After processing this data, the flight
computers return to each IMU microprocessor
spin-axis and Earth-rate information for sensor

compensation purposes.

As shown in Fig. 5, the sensor data output
of the RSDIMU will be processed in two inde-
pendent solutions corresponding to the IMU
structure. This will allow examination of dual
fail-operational performance at the sensor
level. The data will be processed through
failure detection/isolation and redundancy
management algorithms, least squares solutions
of sensor combinations, attitude update, and
navigation/alignment functions. Sensor
processing will occur at a 64 Hertz update rate.

3. General Description of RSDIMU Components
Inertial Package

The angular rate sensors are Incoflex two-
axis dynamically tuned gyros. The steady state
rate capability is in excess of 100 degrees/
second; this single range torquing will reduce
scaling errors due to switching between ranges,
reduce software requirements, and considerably
simplify the gyro torquing electronics. The
RSDIMU gyro performance parameters given in
Table 1 are commensurate with 2 Km/hr. navi-
gation systems.3

Table 1. INCOFLEX GYRO PERFORMANCE
PARAMETERS

ACCURACY IN deg/hr 1lo
BIAS REPEATABILITY 0.01
RANDOM DRIFT 0.01
ANISOELASTICITY IN deg/hr/g2 0.02

TORQUING RATES IN deg/sec @ 74°C

ambient
STEADY STATE 110
TRANSIENT (1 second) 220
% DUTY CYCLE @ 400 deg/sec 1
TORQUING ACCURACY IN PPM 50

PHYSICAL CHARACTERISTICS
SIZE - DIA. X LENGTH IN cm 5.1 x 4.6
WEIGHT IN Kg .34
SPIN SPEED IN RPM 12,000

POWER REQUIREMENTS IN watts

SPIN MOTOR . 2.0
TORQUER @ 1 rad/sec 2.0
PICKOFF 0.2

210

The Tinear acceleration sensors for the
RSDIMU are Incoflex two-axis pendulous accelero-
meters.. The two-axis suspension system for the
accelerometer is a slightly modified version of
that used for the Incoflex gyro. The torquer is
pendulous relative to both torsional axes of the
suspension system. Deflection of the pendulous
mass is sensed by pickoffs and is proportional to
the applied acceleration. Since the gyro and
accelerometer axes are aligned on each face of
the semi-octahedron, it is possible to package
the sensors as shown in Fig. 1. The accelero-
meter performance characteristics are given in
Table 2 and provide a navigation accuracy
consistent with the gyro.3

Table 2. INCOFLEX ACCELEROMETER
PERFORMANCE PARAMETERS

Range 10 g

Bias stability: o ’
lTong term 100 yg 1o
two-hour drift 5ug lo

Scale factor: -
stability, long term 50 ppm
non-linearity 0.1 ug/q2

Temperature sensitivity over 65°C range:
bias {uncompensated) 18.0 ug/°C max.

bias (compensated) 1.8 ug/°C max.
scale factor (compensated)

3.6 ppm/°C max.
scale factor (uncompensated)

420 ppm/©°C

Anisoelastic cross-coupling 0.25 ng/g2
P

Sensor Compensation Microprocessors

As illustrated in Fig. 5, each gyro/
accelerometer pair has a microprocessor (Intel
8086) to allow for system growth. In the system
being fabricated for flight testing two Intel
8086 microprocessors are installed for each half
of the IMU. One is operated as the CPU master
and the other operates in the slave mode. Each
processor has its own memory, and each is
assembled on its own board. The Intel 8086 is a
16-bit processor capable of performing signed and
unsigned arithmetic operations in binary and
decimal formats, including multiply and divide.
Through use of a memory segmentation technique,
each can directly address up to one million bytes
of memory. Both units used here are operated at
4 MHz.

The internal architecture of the 8086 con-
sists of two asynchronous processors, one to con-
trol thé basic processor operation and bus, and
the other to prepare and operate on the data. No
input/output lines are dedicated on the CPU, but
the bus can provide all the necessary control
lines to the various peripheral equipment. The
8086 is well suited for multiprocessor configu-

rations because it uses its Lock signal to
support a read/modify/write sequency and a Test
signal for external processor synchronization.

When both halves of the RSDIMU are
operated, a clock signal is transferred from one
to the other so that they operate synchro-
nously. This ensures the time-homogeneous
transfer of data from the microprocessors to the
interface with the flight computers.

Flight Computers

The flight processors used in this system
are ROLM 1666 MIL-SPEC computers?. These
machines are state-of-the-art general purpose
16-bit minicomputers packaged for applications
requiring high reliability in hostile environ-
ments. The ROLM 1666 is a mapped, tri-processor
machine featuring a microprogrammed multi-
accumulator General Purpose Processor (GPP), a
high-speed variable precision hardware Floating
Point Processor (FPP), and a Direct Memory
Access (DMA) processor. The GPP typically
manipulates 16- or 32-bit operands, performs the
setup for floating point instructions, and
carries out programmed input/output
instructions. The FPP can accommodate single
precision {32-bit, 6 to 7 significant decimal
digits), extended precision (48-bit, 12 to 13
decimal digits), and double precision (64-bits,
17 to 19 significant decimal digits) operands.
The DMA processor enables high speed transfers
(approaching one megaword/second) between main
memory and an external device to occur simulta-
neously with program execution without program
intervention.

In addition to its high reliability and
excellent hardware capabilities, the ROLM 1666
is supplied with a variety of software® that
makes this computer system an excellent choice
for research applications. The vendor supplied
software includes operating systems, compilers,
assemblers, editors, file management systems,
etc. The combination of excellent support soft-
ware, high processor speed, and the number of
peripheral devices that can be readily inte-
grated into the computing system permits the
systems engineer to carry out Failure Detection
and Isolation/Redundancy Management algorithm
research more effectively by providing much
needed visibility into the inertial system
operation. In addition, algorithm selection and
modifications required to improve FDI/RM tech-
niques are easily incorporated because of the
ROLM system capabilities.

ROLM 1666-to~IMU Interface

The Intel 8086 microprocessors provide
scaled, fixed-point, compensated sensor data,
status information, and other data, to the ROLM
computers using high-speed bit-parallel, word
serial interfaces. Each word transmitted
between the ROLM computer and the 8086 micro-
processor is 16 bits wide. The transmitted data
is represented by either one or two words (16 or
32 bits).

To implement the high speed interface
between the IMU and the ROLM processors, a ROLM

Data Channel Controller (DCC) was selected. The
DCC is fabricated on a single modular printed
circuit card and is contained in a ROLM
input/output chassis. The Intel 8086, contained
in the IMU electronics box, communicates with the
DCC over signal cables 10.7 m (35 feet) long.

The DCC provides the required control logic for
block data transfers between the Intel 8086's and
the ROLM 1666 memories, and uses the DMA
capability of the ROLM processor. The use of the
DCC in this application is described more fully
in a later section describing the software
mechanization.

Figure 6 is a block diagram of the main
processing system components currently envisioned
to conduct RSDIMU flight experiments. The inter-
face signals between an 8086 and the ROLM I/0
chassis containing a DCC are shown in the upper
left part of the figure. Data is transferred
between the ROLM and Intel systems using the
appropriate set of 16 data 1ines. The Mode
status line informs the 8086 of the DCC's
expected direction for data transfers (either in
or out). The Data Channel Active line indicates
when the DCC is in a condition to effect data
transfers; the Data Transfer Request line (Device
Done) is pulsed by the 8086 to actually initiate
each word transfer. The Data Transfer Request
Acknowledge line (Input Ack. or Output Ack.)
informs the 8086 that the requested transfer has
occurred.

Figure 6 also shows the peripheral and other
equipment used with the ROLM computer for this
experiment. Each computer has its own control
panel which permits examination/modification of
memory and accumulators at the most fundamental
level (octal data and machine instructions), and
controls the start/stop program sequence. The
terminal is a standard Texas Instruments Silent
700 which is used to initialize the navigation
algorithm and other program constants, as well as
log the RSDIMU system performance in real time.
The tape recorder, a Genisco ECR-10 1/2-inch
cartridge system, is used to store various sensor
head parameters determined at startup as well as
the navigation systems' performance. The FDI/NAV
Control Unit, designed and built at NASA-Langley,
is used for navigation algorithm mode control,
real-time floating point display of pre-selected
quantities, and the injection of simulated sensor
failures for evaluation of the redundancy manage-
ment and failure detection/isolation algorithms.
The FDI/NAV Control Unit is interfaced to ROLM
computer "A" as shown in Fig. 6 and uses the ROLM
16-Bit Parallel 1/0 Buffer for data transfer.
Data is passed between ROLM processors using a
pair of 16-bit NTDS (Navy Tactical Data Systems,
Standard DS-4772) interfaces, also manufactured
by ROLM.

4. System Software Mechanization

The purpose of this section is to give an
overview of the RSDIMU program flow. While the
program has six modes of operation (Initialize,
Coarse Align, Calibrate, Fine Align, Navigate,
and Shutdown), the Navigate mode is typical of
the task/sub-task and DCC Interrupt Handler
(DCCIH) interactions and will be described here.

21

Figure 7 is a program flow diagram for the
RSDIMU in the Navigate mode, The Main Task
shown in the figure is created with a higher
priority than the RSDIMU 1/0 Task, and begins
its cycle waiting for a start message. This
start message is issued by the DCCIH when an
interrupt occurs after an IMU-to-Flight computer
transfer has been completed. Since the IMU
microprocessors are synchronized (Fig. 6) so
that each will simultaneously transfer data to
its respective flight computer at a 64 Hz. rate,
the Main Task will execute at the same time in
both flight computers; thus the IMU processors
furnish the overall system synchronization.

The Main Task begins execution by con-
verting 16- or 32-bit scaled integer values to
their equivalent double-precision floating point
engineering unit numbers. Two 16-bit status
words accompanying each 8086-to-DCC transfer are
decoded by this scaling routine to determine
which set of scale factors should be used (and
consequently which data have been transmitted).
Transfers between the IMU and flight computers
always consist of twenty-four 16-bit words so
that the DCC setup is independent of program
mode.

After the program in each machine converts
the input values to their appropriate floating
point equivalent, these converted numbers, the
FDI/NAV command mode words, status words, and
values to be recorded are passed between flight
computers using the standard ROLM 16-bit NTDS
interface. Since the FDI/NAV control unit is
serviced by the "A" flight computer, the command
mode word is passed only to the "B" computer.
Similarly, data for real-time terminal display
or tape recording is only passed from flight
computer "B" to computer "A" (Fig. 6). At the
completion of the transfers, both flight com-
puters have the command mode words, status
words, and sensor data for all sensor combina-
tions; additionally, the "A" computer has all
data to be recorded. The last operation carried
out in this block is to implement simulated
sensor failures according to the command mode
word read from the FDI/NAV control unit.

After the coding represented by the first
block has been completed, the Main Task flow
depends entirely on the overall system mode
selected (in this example, Navigate). The first
step in the Navigate mode is the execution of
Failure Detection and Isolation (FDI) and
Redundancy Management (RM) algorithms. The
development and evaluation of these algorithms
is the main thrust of the current research
effort and is indicated in Fig. 7 by the heavy
block. One FDI/RM technique, which incorporates
the edge vectm;nmthodz, will be described in
more detail in a later section. After the
FDI/RM algorithms are complete, the sensor
attitude matrices are updated and the sensor
spin- and pendulous-axes data is calculated for
transfer to the IMU microprocessors. Finally, a
standard navigation algorithm is executed and
the Main Task is suspended until a message is
posted by the DCCIH to repeat the sequence.

While the Main Task is suspended, the
RSDIMU I/0 Task executes. The FDI/NAV control
unit is serviced once per second. Sixty-five

212

sixteen-bit words are transferred to a buffer
memory in the FBI/NAV control unit from flight
computer "A". This buffer memory data is then
continuously displayed on the FDI/NAV control
unit as eight groups of four, eight-digit numbers
(using seven segment displays) and one group of
sixteen status indicators (discrete light
emitting diodes). The status information is
always presented, and a thumbwheel switch is used
to select which group of four decimal numbers is
displayed. Once the flight computer loads the
FDI/NAV control unit buffer memory, the data
group selection and display functions are carried
out by the FDI/NAV control unit without flight
computer involvement.

The hardcopy terminal routine is serviced
next to provide data which permits the research
engineer to evaluate the overall system perform-
ance in real time. Typical navigation data such
as latitude, longitude, altitude, along with time
of day are printed at various intervals ranging
from 10 seconds to 60 seconds. Finally, combina-
tions of system parameters are output to magnetic
tape for post-flight analysis. The number of
parameters recorded and the frequency of
recording vary with the type of experiment being
conducted. After the tape output routine is com-
plete, the RSDIMU I/0 Task begins its cycle
again.

As noted above, one part of the Main Task
requires the transfer of sensor compensation data
from the flight computers to the IMU's. When
this transfer is complete, an interrupt is
generated by the Data Channel Controller and the
flight computer transfers from the execution of
the current task to the DCC Interrupt Handler.

By recalling the last mode command word sent to
the DCC, the DCCIH can determine whether the cur-
rent DCC interrupt was generated after an input
(to the flight computer) or an output (from the
flight computer). In the present case, it is an
output transfer and the DCCIH simply sets the DCC
up for an input transfer and returns to the exec-
ution of the interrupted task.

At some Tater time (dictated by the IMU pri-
mary interrupt clock), data is transferred from
the IMU to the flight computer and causes the DCC
to generate another interrupt. The DCCIH then
(1) determines that this interrupt occurred after
an input transfer, (2) posts a message to start
execution of the Main Task, (3) requests the
operating system (0.S.) to determine which ready
task has highest priority (reschedule), and (4)
returns control to the 0.S. for subseguent
transfer to the Main Task. At the completion of
this event, the program flow repeats the sequence
previously described.

5. Failure Detection and Isolation/Redundancy
Management Algorithms

The primary objectives of the experimental
RSDIMU is to develop and evaluate FDI algorithms
for dual-fail operational performance. For this
system, it is required to survive two gyro and/or
accelerometer failures. The addition of the ROLM
flight computers to the RSDIMU provides the
flexibility to simulate sensor failures through

the use of the FDI/NAV control unit.

The FDI system will be mechanizgd to detect
and isolate three levels of failures®:

(1) Hard-failures: Large magnitude
failures which affect flight control
performance.

(2) Mid-failures: Medium level failures
which affect pilot-display
performance.

(3) Soft-failures: Low level failures
which affect navigation performance.

Figure 8 is a block diagram of the FDI system
processing. Hard-failures must not be allowed
to propagate to the flight control system;
therefore a hard-failure must be detected and
isolated on the cycle in which it occurs. Mid-
failure and soft-failure detection is processed
more slowly after appropriate filtering to
smooth the effects of sensor quantization and
noise.

There are several ways to derive parity

vectors for the semi-octahedron confiqurationZs6,

The edge vector method is the simplest to imple-
ment. The measurements for two gyros or two_
accelerometers are compared along a vector, Eij,
that is perpendicular to their spin axis vectors
S (i=1,2,3,4). From the geometrical
configuration indicated in Figs. 2 and 3, this
vector lies along an edge of the semi-octahedron
defined as

Si X S5
Eij

= o > (1)
[Si x 53]

The parity equations for the gyros are defined
as

Pij = (W3 - Wj) - Eij Jj>i (2)

where W; is the output of the ith gyro. For the
fail-op/fail-op configuration there are six
parity equations7. The parity residuals are
tested against a threshold to detect failures.

A logic variable, Fij, is set true if the
corresponding parity equation exceeds the
failure threshold. The logic to isolate a
failure in gyro 1 is,

Fg1 = (F12 -F13) (Fgz2 -Fg3) + (F12 -F14)
(Fg2-Fga) + (F13 - F14) (Fg3-Fga) (3)

There is a failure in gyro 1, indicated by Fg1
set true, if any of the three pairs of parity
residuals has exceeded the failure threshold
and the corresponding gyros have not failed.
When this method is extended to all four gyros,
two failures can be isolated. One parity
equation remains after two failures to detect
but not isolate a third failure. On detection
of a third failure, the system would cease

operation. The accelerometer failure detection
and isolation is determined in a similar manner.

The design of the RSDIMU when coupled with
the flight computers, as indicated by Fig. 5,
allows for two independent navigation solutions
to be processed. It is possible to run more than
two solutions simultaneously with proper least
squares combinations of sensors. If a sensor in
system A fails, system B parameters can be used
to reset system A parameters to account for the
cumulative effect of the failed sensor within the
1imitations of the system. Table 3 indicates the
Teast squares combinations of sensors designed in
the RSDIMU.

Table 3. LEAST SQUARES COMBINATIONS OF
SENSORS
Failure Channel
Gyro/Accel. A B
0 1, 2 3, 4
1 2, 3 3, 4
2 1, 3 3, 4
3 1, 2 1, 4
4 1, 2 1, 3
1, 2 3, 4 3, 4
3, 4 1, 2 1, 2
1, 3 2, 4 2, 4
1, 4 2,3 2, 3
2, 3 1, 4 1, 4
2, 4 1, 3 1, 3

To demonstrate the FDI and redundancy
management capability of the RSDIMU software, the
system was simulated over a trajectory of seven
90° turns at 76 m/s. The simulation included
initial condition errors for alignment, velocity
and position, and inertial sensor errors given in
Tables 1 and 2 as well as random noise. During
the flight, soft-failures (since these are the
most difficult to detect) were inserted into the
system according to the schedule of Table 4. The
failures were simple bias shifts.

Table 4. SENSOR FAILURE INSERTION AND
DETECTION

Time Time To
Failure Sensor Magnitude Applied Detection
Seconds Seconds

1 gyrol 2.5°/hr 400 144
2 accel 1 5x10-3g 1100 55
3 gyro 2 -3.5°/hr 1800 422
4 accel 2 -5x10-3g 2500 239
5 ayro 3 3.5°/hr 3200 312

213

214

The effects of the sensor failures on
velocity error for system A are indicated in
Fig. 9. There are four resets of system A
before system failure because of degradation in
gyro 3. The failure detection levels for the
gyro and accelerometer parity equations were set
at 0.06° and 2.1 m/s respectively. Figure 10
shows the effect of gyro failures on the heavily
filtered parity equations, and Table 4 gives the
times of failure insertion and isolation.

6. Concluding Remarks

A redundant strapdown inertial measurement
unit which will provide dual fail-operational
performance has been designed and will soon
become available for testing. The unit features
state-of-the-art components with data processing
frequencies consistent with integrated avionics
concepts currently envisioned. Development of
this unit will allow testing of failure
detection, isolation and redundancy management
algorithms in the flight environment.

References

1. Elson, Benjamin M.: 767 Digital Avionics
Stress Flexibility. Aviation Week & Space
Technology, vol. 109, no. 10, 1978,
pp. 181-188.

2. Preliminary Design of a Redundant Strapdown
Inertial Navigation Unit Using Two Degree
of Freedom Tuned Gimbal Gyroscopes, NASA
CR-145035, 1976.

3. Morrell, F. R. and Russell, J.: Design of a
Developmental Dual Fail-Operational
Redundant Strapped Down Inertial
Measurement Unit. [IEEE 1980 National
Aerospace and Electronics Conference
(NAECON 1980), volume 1, 1980, pp. 322-329.

4, Programmer's Reference Manual for the ROLM
Model 1666 Processor. ROLM Corp., June
1977.

5. ROLM MIL-SPEC Computers Software Catalog.
ROLM Corp., 1979.

6. Motyka, P.; Landey, M.; and McKern, R.:
Failure Detection and Isolation Analysis of
a Redundant Strapdown Inertial Measurement
Unit, NASA CR-165658, February 1981.

7. Craig, R. J. and Russell, J.: Failure Modes
and Redundancy Analysis for the Multifunc-
tion Inertial Reference Assembly {MIRA).
AFFDL-TR-78-25, U. S. Air Force, 1978.

Figure 1. Semi-octahedron sensor mounting
V4
S
f 2
S3 y
S /
1
X
Figure 2. Sensor spin axis orientation

Figure 3.
vector

geometry

_____ 1]

Sensor measurement axis and edge

SPIN AXIS
TERMS

ouTPUT

INSTRUMENT
S TROCToR CLueTER STRUMENT RLECTRONICS
STRUCTLRE e PTG INTERFACE
ACCELEROMETERS
INSTRUMENT
MOUNT ING CLUSTER POWER SUPPLY
STRUCTURE GYROS INSTRUMENT ELECTRONICS
ACCELEROMETERS 1MU INTERFACE

EARTH RATE

SPIN AXIS
TERMS
OUTPUT

NONREDUNDANT SYSTEM B
-

Figure 4.

BATTERY &
v CHARGER

RSDIMU block diagram

EARTH RATE

.)
i
FACE] o] SENSOR | mua [
GYRO | KOMPENSATION 1| RIGHT ||
- et
ACCEL PROCESSOR 1 :CCM:UTER :"ruum_—m"UDE' Lo
up DATE| | NAV
RFA
FACE 2 SsoR | TER ACE ™ DATA
GYRO | [COMPENSATION | ' DISPLAY
ACCEL |*=j PROCESSOR 2 \
' | At RECORD
! 1, | INJECT
FACE3],.] SENSOR LU ymug It CONTROL
GYRO F_compmsm 1 arenr |1 PANEL
A
CCEL = PROCESSOR 3 T comeune 3 R s I popyey B
if B L [FOVRM]Fupoate || mav
TACE 4] Sensor | INTERFACER
GYRO OMPENSATION | I
ACCEL [*] PROCESSOR 4]~)
RSOIMU ! l FLIGHT COMPUTERS
Figure 5. RSDIMU software data flow
DATA CHANNEL CONTROLLER
INTERFACE SIGNALS . L:‘P'#
16-B T DATA -
FLIGHT
"‘:U 16-B1T DATA | FLIGHT 1O BUS COMPUTER
PROCESSO MRy PRocissoR
1o MODE (N ! OUT) '?0 ¢
DATA TRANSFER REQUEST MEMORY
CHASSIS
DATA TRANSFER REQUEST ACK TERMINAL A
T DATA CHANNEL ACTIVE 1 FOTNAY T
(7]
|| g | leontroLunir] Foro
al | 3} | INTERCOMPUTER | PANEL
SYNCHRONIZATION gz INTERFACE
3% SIGNALS
=] © CONTROY
s | = PANEL
=[] =
U= [}
DATA CHANNEL CONTROLLER FLIGHT
MU INTERFACE SIGNALS FLIGHT COMPUTER
g | COMPUTER 10 BUS PROCESS OR
PROCES SORK, w B
10 110 MEMORY
CHASSIS B
Figure 6. Block Diagram of RSDIMU Computing

Hardware

215

kS

216

MAIN TASK

i

WAIT FOR DCC | NTERRUPT
HANDLER MESSAGE

l

1) CONVERT TO FLOATING POINT
AND SCALE

2) EXCHANGE DATA WITH SECOND
FLIGHT COMPUTER

3) INJECT SENSOR FAILURES

I

FDI/RM

LEAST SQUARES PROCESS

l

OUTPUT SENSOR COMPENSATION |
DATA 10 IMU

l

| ATTITUDEIFCS DATA |

RSDIMU 1/0 TASK
SERVICE FDI/NAV
CONTROL UNIT

:

LOG DATA
ON TERMINAL

l

OUTPUT DATA
TO TAPE
L

DCC INTERRUPT HANDLER

DCC INTERRUPT
CLEAR THE DCC

[NAVIGATION ALGORITHM]
|

POST START MESSAGE SETUP DCC FOR
FOR MAIN TASK INPUT TRANSFER

REQUEST RESCHEDULING l RETURN|
AND RETURN |

Figure 7. RSDIMU Program Flow - Navigation Mode
smso&: DATA
PROCESS
PARITY
EQUATIONS
§ 6dHz] eanz
FIRST-ORDER SECOND-
LAG FILTER ORDER
FILTER
64 | T T 1h
HARD MID SOFT
FAILURE FAILURE FAILURE
DETECTION DETECTION DETECTION
64 Hz
TSOLATION
AND
REDUNDANCY
MANAGEMENT
64 Hz
NAV [GATION/
FLIGHT CONTROL
ALGORITHMS
{
Figure 8. Failure Detection and Isolation Data

Flow

METERS/ sec
10~
VELOCITY
ERROR
00 120 1440 2160 2880 3600
TIME, sec
Figure 9. Velocity error and reset
DEGREES
dr
P34 7~
=1L
4 —
0
l —
P23
1L
Ar
P14 |
--l L—\
A
P13 _/-— N\
0
l p—

P12 /
1]

] |
0 720 1440 2160 2880 3600
TIME, sec

Figure 10. Gyro parity equation response to
failure

217

P

&

James H. Bamford
Vitro Laboratories
14000 Georgia Avenue
Silver Spring, MD 20910

Major M. Barrette

Canadian Forces Air Navigation
School

C. F. B. Winnipeg

Westwin, Manitoba

Canada R2R OTO

Wayne H. Bryant
NASA LaRC

MS 494

Hampton, VA 23665

Wolfgang Buechler
Comptek Research, Inc.
44 Castilian Dr.

Goleta, CA 93017

L.R. Cecchini

E-Systems, Inc., Melpar Division
7700 Arlington Blvd.

Falls Church, VA 22046

Michael J. Christofferson
E-Systems, Inc., Melpar Division
7700 Arlington Bivd.

Fails Church, VA 22046

Willie Chun

General Dynamics
P.O. Box 80847

San Diego, CA 92138

Walter K. Daku

Vitro Laboratories
14000 Georgia Avenue
Silver Spring, MD 20910

Mr. Destarac
Aerospatiale
B.P. No. 3153
Toulouse Cedex, France

James R. Doane

Sierra Research Corporation
Box 222

Buffalo, NY 14225

Charles Donaghe
Halliburton Services
P.O. Box 1431
Duncan, OK 73533

ATTENDEES

James Doty

Bendix Corporation
Guidance Systems
400 S. Beiger St.
Mishawaka, IN 46544

Albert H. Dumas
Westinghouse

P.O. Box 1897, MS923
Baltimore, MD 21203

Roy Farrow

Litton Systems (Canada) Ltd.
25 Cityview Drive

Rexdale, Ontario

Canada M9W 5A7

John B. Fisher

Vitro Laboratories

Cruise Missile Department
14000 Georgia Avenue
Silver Spring, MD 20910

Dieter Frank
AEG-Telefunken
A-2, E232
Elisabethenstr 3
79 ULM, Germany

Robert C. Garvey

E-Systems, Inc., Melpar Division
7700 Arlington Bivd.

Falls Church, VA 22046

Dean Gorby

General Dynamics

P.O. Box 80847, MS 43-5530
San Diego, CA

Joseph S. Grosson (Guest Speaker)
Executive Director for Acquisition
Naval Material Command
NAV-MAT-08B

Navy Department

Washington, D.C.

Mr. Guyot

Aerospatiale

BP No. 3153

Toulouse, Cedex, France

H.R. Helbig

Boeing Commercial Airplane Co.
P.O. Box 3707

MS 25-09

Seattle, WA 98124

Travis L. Herring

Code K105

Naval Surface Weapons Center
Dahlgren Laboratory

Dahlgren, VA 22448

Lt. Douglas Hildebrand
Scientific Analyst

USAF

4950 TESTWIFFTF
Wright-Patterson AFB, OH

Carl L. Hruby
Sierra Research
P.O. Box 222
Buffalo, NY 14225

Tom lverson

cuslC

9333 Balboa

San Diego, CA 92123

Joseph Jaksic
Transport Canada TAFS
Tower C, Place de Ville
Ottawa, Ontario
Canada K1A ON8

James H. King

SAl Technology Co.

4060 Sorrento Valley Blvd.
San Diego, CA 92121

Jean-Pierre Lafargue
Battelle-Institute. V.

6000 Frankfurt am Main

Am Romerhof 35

Frankfurt, West Germany 9000160

M. Langlade

SN1 Aerospatiale
BP No. 3153, 31053
Toulouse Cedex
France

Ken Lee
Kollmorgen

Route 5

North Hampton, MA

Max Lee

Lockheed

P.O. Box 551
P72-71, B310, B6
Burbank, CA 91520

219

General Young Soo Lee
Young O Inc. Co., Ltd.

4th Floor, Sae-Woo Building
1-499 Yoido-Dong,
Yungdungpo-Koo

Seoul, Korea

Mr. Lordemann

GTE Sylvania

P.O. Box 188

Mountain View, CA 94042

Elwood Mac Murro

U.S. Naval Underwater
Systems Center

New London, CT 06320

P.J. Manders

National Aerospace Lab.

2 Anthony Fokkerweg
1059CM

Amsterdam, The Netherlands

Orin E. Marvel

Honeywell, Inc.

1200 E. San Bernardino Road
West Covina, CA 91790

Michael McCune
Command, Control &
Communications Corp.
23670 Hawthorne Bivd.
Torrance, CA 90505

Wayne Milis

U.S. Naval Surface Weapons Center
Dahlgren Laboratory MS F24
Dahlgren, VA 22448

Jong Myung
Daejeon Machine
Depot (4-2-3)
Daejeon P.O. Box 35
Daejeon, Korea

Sharon Neelands
Singer-Librascope
833 Sonora Ave.
Glendale, CA 91201

Dennis Nickle

E-Systems, Inc., Melpar Division
7700 Arlington Blvd.

Falls Church, VA 22040

Harriet A. Nixon

Naval Ocean Systems Center
271 Catalina Blvd.

San Diego, CA 92152

220

Ellen Paz

Raymond Engineering

217 Smith St.

Dept. 15, Military Tape Recorders
Middletown, CT 06457

Edward Pinson
MITRE Corp.
Bedford, MA.

Nancy Duli Pioli

Sierra Research Corporation
P.O. Box 222

Buffalo, NY 14225

William D. Pittman

Boeing Commercial Airplane Co.
P.O. Box 3707 Ms 25-09

Seattle, WA 98124

Mark Plummer

GTE Sylvania

Western Division

P.O. Box 188, Dept. 3100
Mountain View, CA 94042

Bernard L. Portley

U.S. Army

CORADCOM Field Office
DRDCO-FL

Ft. Leavenworth, KS 66027

Gordon P. Pratt
Goodyear Aerospace
Bldg. 26C

Litenfield Park, AZ 85340

Charles B. Probert

Vitro Laboratories
14000 Georgia Avenue
Silver Spring, MD 20910

Mr. Reau

SNI Aerospatiale

BP No. 3153, 31053
Toulouse Cedex, France

John Riney

General Systems Corporation
8611 Bells Mill Rd.

Potomac, MD 20854

Robert Shultz

Command, Control &
Communications Corp.

23670 Hawthorne Bivd.

Torrance, CA 90505

Roy L. Smith
DCA/CCTC/C332
Pentagon, Room 685
Washington, D.C. 20301

Ron Sorace
Singer-Librascope
833 Sonora Ave.
Glendale, CA 91201

Steve Spurlin

Harris Corp.

P.O. Box 37

MS 1-920

Mel Bourne, FL 32901

Darryi B. Stephison

Flight Test Instrumentation
P.O. Box 3707, M/S 25-09
Seattle, WA 98124

Steve Sultany
General Dynamics
P.O. Box 80847

San Diego, CA 92138

Carl W. Symborski

Vitro Laboratories
14000 Georgia Avenue
Silver Spring, MD 20910

William E. Tipton Jr.
USAF 3390TH TTMKM
KEESLER AFB, MS 39534
207 Coolidge Avenue
Biloxi, MS 39532

Gilliam Tucker
Comptek Research, Inc.
44 Castilian Dr.

Goleta, CA 93017

Alan Van Boven

GTE Sylvania

P.O. Box 188, Dept. 3100
Mountain View, CA 94042

David Walker

Computer Science Corp.
Dept. 652,

300 Sparkman Dr.
Huntsville, AL 35807

Larry Walker

CORADCOM Field Office
Room 24, Bldg. 52 DRDCO-FL
Ft. Leavenworth, KS 66027

Bryan Wilkins

Systems Development Laboratory

(TAFS)
Transport Canada Building
Place De Ville
Ottawa, Ontario K1A-ON8
ATTN: TANF/A

Trevor Williams

DNCO, Department of Defense

Campbell Park Offices
Canberra, Australia ACT2600

ROLM Corporation Attendees

Jim Basiji
Engineering

Steve Bowden
Sales

Rex Cardinale
Software Engineering

Frank Chang
Product Management

Denny Chrismer
International Sales

Rich Conley
Major Programs

Rich Coon
Systems Engineering

Jay Daley
Sales Support

Ed Dolinar
General Sales

Roger Fairfield
Engineering

Carol Foreman
Product Management

Dana Hendrickson
Product Management

Irv Hecker
Pianning

Larry Hughes
Customer Service

Al Miller
Sales

Fran Miller
Product Management

Helmut Muehl-Kuehner
International Sales

John Myer
Product Management

Bruce Noel
Product Management

Dan O’Brien
Marketing

Alice Oldham
Systems Engineering

Dennis Paboojian
Mil-Spec Division
General Manager

Arvin Perry
Sales

Steve Phillips
Manufacturing

Dave Pidweil
Program Management

Ron Platz
Customer Service

Jim Russell
Customer Service

Don Smith
Sales

Val Smith
Sales

Ben Stanger
Technical Publications

Chuck Sternhagen
Customer Service

Larry Stovall
Program Management

John Tinnon
Software Engineering

Peter Torgrimson
Product Management

Dave Williams
Sales

Don Williams
Manufacturing

Nomi Williams
Systems Engineering

Tod Williams
Program Management

Bob Zehnder
Sales

221

1. Report No. 2.WG;\;;|;nmem Accession No. 3. Recipient’s Catalog No.
NASA Cp-2206

4. Title and Subtitle 5. Report Date
RUGGEDIZED MINICOMPUTER HARDWARE AND SOFTWARE December 1981
TOPICS - 1981 6. Performing Organization Code
505-41-63-~-02
7. Author(s) 8. Performing Organization Report No.
L-14888

10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center 11. Contract or Grant No.
Hampton, VA 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Conference Publication
National Aeronautics and Space Administration 1a
Washington, DC 20546

. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This report is a compilation of conference papers presented at the Fourth ROLM MIL-
SPEC Computer Users Group Conference held in San Diego, California, February 22-25,
1981. This conference provided the attendees with some insight into many novel
minicomputer applications as well as providing some useful techniques for the
development of error-free software. While all presentations focused on the use of a
single vendor's line of minicomputers, the novel ideas described have a much wider
applicability. The presentations covered both hardware and software areas in a
variety of topics such as (but not limited to) the role of minicomputers in the
development and/or certification of new aircraft, a minicomputer-based research tool
for navigation/flight control sensor redundancy management studies, and techniques
for the rapid development of error-free real-time software.

17. Key Words (Suggested by Author(s)) 18. Distributi;ﬁ Stafemerﬁ
ROIM minicomputers Unclassified - Unlimited
Airborne/spaceborne computers
Real-time operation
Operating systems

Computer programs Subject Category 62
19. Security Classif. {of this report) 20. Security Classif. {of this page)) 21. No. of .F:‘ages A722. Price]
Unclassified Unclassified 1 226 N __"§j1]

For sale by the National Technical information Service, Springfield. Virginia 22161

NASA-Langley, 1981

